
10 Ways Drupal 8 is More Secure
April 9, 2019

Peter Wolanin

Security Summit

1. Twig templates used for html generation
2. Removed PHP input filter
3. Site configuration exportable, manageable as code
4. User content entry and filtering improved
5. Hardened user session and session ID handling
6. Automated CSRF tokens via route definitions
7. Trusted host patterns enforced for requests
8. SQL limited to executing single statements
9. Clickjacking protection enabled by default
10.Core JavaScript API Compatible with CSP

The 10 Ways

 2

✤ Drupal 5, 6, 7, 8 core
contributor  
drupal.org/user/49851

✤ Drupal Security Team
✤ BioRAFT Engineering
✤ Helped implement several

of the Drupal 8 features in
this talk

Who Am I?

 3

https://www.drupal.org/u/pwolanin

Photo by amazeelabs, by-nc-sa

https://www.drupal.org/u/pwolanin
https://www.flickr.com/photos/amazeelabs/16968083219/in/set-72157651561042300

✤ https://www.owasp.org/
✤ Has self-study materials, best practices, and cheat

sheets
✤ Software tools like the ZAP proxy
✤ “the new OWASP Top 10 addresses the most

impactful application security risks currently facing
organizations.”

✤ Ordered by risk, not just prevalence

Open Web Application Security
Project (OWASP)

 4

1. Injection
2. Broken Authentication
3. Sensitive Data Exposure
4. XML External Entities (XXE)
5. Broken Access Control
6. Security Misconfiguration
7. Cross-Site Scripting (XSS)
8. Insecure Deserialization
9. Using Components with Known Vulnerabilities
10. Insufficient Logging&Monitoring

OWASP Top Ten (2017)

 5

More on OWASP Top Ten:
Cracking Drupal
Thurs. 04/11/2019 - 09:00 am
Room: 618

✤ OWASP Top Ten #7: Cross-Site Scripting (XSS)
✤ OWASP Top Ten #1: Injection
✤ Drupal 8 enables Twig auto-escaping
✤ Twig limits the scope of functionality - can’t run SQL

or arbitrary PHP in a template
✤ Twig is also easier to read/write for people who are

not PHP coders (or really, for everyone)

#1 Twig templates used for html
generation

 6

theme() functions deprecated and will be removed
in Drupal 9 - don’t add new ones.
Theme autoescape helper function added:
theme_render_and_autoescape()

#1 Twig templates used for html
generation

 7

✤ OWASP Top Ten #1: Injection (SQL, PHP, etc)
✤ In Drupal 7 getting access to an admin Drupal login

is trivially escalated to total control of the site and a
server shell

✤ For Drupal 7, importing something like a View
required importing executable PHP code

#2 Removed PHP input filter and
the use of PHP as a configuration
import format

 8

✤ Other areas where PHP snippets might have been
used in Drupal 7 including block visibility, field
defaults, etc. have been removed

✤ If you need special logic - put it in a module file in
git where you can track it!

#2 Removed PHP input filter and
the use of PHP as a configuration
import format

 9

✤ OWASP Top Ten #6: Security Misconfiguration
✤ The Configuration Management Initiative (CMI)
✤ Exported YAML files can be managed together with

your code in git
✤ Auditable history of configuration changes
✤ Diff your active config to what’s in the codebase

#3 Site configuration exportable,
manageable as code, and
versionable

 10

 11

✤ Contributed module allows locking production
configuration  
drupal.org/project/config_readonly

✤ You can also hook into the configuration system to
log each change

#3 Site configuration exportable,
manageable as code, and
versionable

 12

#4 Filtering Text

http://flickr.com/photos/pinksherbet/253412963/

http://flickr.com/photos/watz/119356162/

✤ OWASP Top Ten #7: Cross-Site Scripting (XSS)
✤ Integration of the editor configuration and the text

filter configuration reduces the inclination to grant
full HTML access

✤ You know full HTML is the same as the ability to
hijack your whole site via XSS, right?

#4 User content entry and filtering
improved

 14

 15

The corresponding HTML tag (the U tag) is added to the allowed list:

Drag a new button from the available to enabled section in the editor configuration:

✤ Core text filtering supports limiting users to using
only images local to the site

✤ Added attribute filtering, which is important since it
allows you to block various appearance tricks (e.g.
SPAM text with a class making it invisible) and ajax
hijacking - we blocked some of that in SA-
CORE-2015-003

#4 User content entry and filtering
improved

 16

✤ OWASP Top Ten #2: Broken Authentication
✤ Hashed session IDs in database
✤ Mixed-mode session support removed
✤ Leading “www.” is no longer stripped from the

session cookie domain

#5 Hardened user session and
session ID handling

 17

✤ Drupal 7: a stolen session ID (sid or ssid) from a
database dump can be used to hijack a session

✤ Drupal 8: this can’t happen (using core DB session
handling) because they are hashed when stored  
  
https://stackoverflow.com/questions/549/the-definitive-guide-to-form-based-
website-authentication  
 
https://utcc.utoronto.ca/~cks/space/blog/web/HashYourSessionIDs

#5 Hardened user session and
session ID handling

 18

 19

--
-- Dumping data for table `sessions`
--

LOCK TABLES `sessions` WRITE;
/*!40000 ALTER TABLE `sessions` DISABLE KEYS */;

INSERT INTO `sessions`
VALUES
(1,’lNeHVJs6XmKq0vew4gizoAo-_B18LA-1G_EcABK8KaI’,
‘','127.0.0.1',1466174035,0,'');

INSERT INTO `sessions`
VALUES
(130,’PdV0vPyj0hOahcTq3eJQOZ1WBA-0n8BZVsxBywbkMgE',
‘','127.0.0.1',1466174490,0,'');

 20

 21

✤ OWASP Top Ten: Cross-Site Request Forgery
(CSRF)

✤ Very common Drupal vulnerability - a menu
callback (route) does an action like an unpublish,
delete, or comment approval on GET

✤ Drupal 7 required custom code to add and validate
a token - Drupal 8 makes it easy

#6 Automated CSRF token
protection in route definitions

 22

#6 Automated CSRF token
protection in route definitions

 23

entity.shortcut.link_delete_inline:
 path: '/admin/config/user-interface/shortcut/link/{shortcut}/delete-inline'
 defaults:
 _controller: 'Drupal\shortcut\Controller\ShortcutController::deleteShortcutLinkInline'
 requirements:
 _entity_access: 'shortcut.delete'
 _csrf_token: 'TRUE'

#6 Automated CSRF token
protection in route definitions

 24

entity.shortcut.link_delete_inline:
 path: '/admin/config/user-interface/shortcut/link/{shortcut}/delete-inline'
 defaults:
 _controller: 'Drupal\shortcut\Controller\ShortcutController::deleteShortcutLinkInline'
 requirements:
 _entity_access: 'shortcut.delete'
 _csrf_token: 'TRUE'

✤ OWASP Top Ten #6: Security Misconfiguration
✤ Handbook page on host header spoofing:

drupal.org/node/1992030
✤ In settings.php you need to define a set of patterns

and only matching hostnames are allowed when
bootstrapping Drupal

#7 Trusted host patterns enforced
for requests

 25

#7 Trusted host patterns enforced
for requests

 26

✤ OWASP Top Ten #1: Injection (SQL, PHP, etc)
✤ Drupal 6 used the PHP mysqli driver - this only

allows a single statement to be sent to the DB
server in each call

✤ Drupal 7 and 8 use PDO MySQL - this allowed
unlimited statements in each call to the DB server -
who knew?

#8 SQL limited to executing single
statements

 27

✤ Why was SA-CORE-2014-05 so bad?
✤ Multiple vectors accessible to anonymous users
✤ A single read query (e.g. looking up a username)

could be converted into a read plus one or more
inserts or updates - multiple SQL statements

✤ This means Drupal 7 on MySQL was actually a lot
more vulnerable to SQL injection than Drupal 6!

#8 SQL limited to executing single
statements

 28

✤ PDO MySQL limited to executing single statements
via PHP flag in >= 5.6.5 or 5.5.21

✤ Good news - that’s also in 7.40+
✤ Delimiter checking also added for all Drupal 8 SQL

drivers
✤ SQL injection is still very dangerous, however - a

UNION query can be used to exfiltrate data like
hashed passwords or the values of variables

#8 SQL limited to executing single
statements

 29

✤ OWASP Top Ten #6: Security Misconfiguration
✤ X-Frame-Options: SAMEORIGIN
✤ Prevents the site from being served inside an iframe
✤ This blocks so-called click-jacking attacks
✤ Prevents content hijacking via iframing
✤ A favorite of independent security researchers

#9 Clickjacking protection enabled
by default

 30

✤ OWASP Top Ten #7: Cross-Site Scripting (XSS)
✤ Content Security Policy v2:  

https://www.w3.org/TR/CSP2/
✤ Drupal 8 JS settings added to page content as

JSON, not a script that’s executed
✤ There is no inline JS in core (not supported), so all

inline JS can be blocked by CSP greatly reducing
the possible XSS attack surface

#10 Core JavaScript API
Compatible with CSP

 31

✤ Study the OWASP Top 10 in the PHP context
✤ Vulnerabilities in some code you got via composer?  

https://github.com/FriendsOfPHP/security-advisories
✤ Limit SQLi damage with mysql single statements
✤ If using Twig, enable auto-escaping
✤ Don’t store raw session IDs in the database/files
✤ Enable CSP and block inline JS
✤ Use web server or PHP to limit allowed hostnames
✤ Always beware user input!

General Take-aways for PHP Devs

 32

https://github.com/FriendsOfPHP/security-advisories

✤ Drupal 8 is more secure than Drupal 7 and many of
the security features actually enhance DX or user
experience

✤ Drupal 8 does have possible new risks due to the
inclusion of 3rd party libraries

✤ Extensive refactoring of code to a more OO style
and to use new APIs may also have introduced
bugs with security impact e.g. SA-CORE-2019-003

Final Thoughts

Licensed:
http://creativecommons.org/licenses/by-nc-sa/2.0/

This presentation is © 2019

This is a derivative work of a presentation I gave at
Drupal North 2016, and DrupalCon Vienna 2017

http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/

