
Advanced Web
Services with

JSON API

HOWDY!
I am Mateu
I am here because I am a decoupling nerd
You can find me at @e0ipso

Outstanding
problems
Still looking for
solutions!

JSON API
What is it?
Why use it?

You will learn about…

Drupal module
What’s the status?
What are the
limitations?
How does it relate to
REST in core?

{json:api}
paints your
bike shed

Defines:
- Transport
- Interaction

Creative Commons specification

Strongly driven by FE & UX experts
Steve Klabnik, Yehuda Katz, Dan Gebhardt, Tyler Kellen, Ethan Resnick

Why this
one?
Since there are others, and a
HAL implementation is
already in core. And GraphQL
in contrib.

141 repos
That’s a lot of traction

Client & Server
Total success!

18 languages
And a lot of range

Place your screenshot here

With a
highlight on its
flexibility
Stays neutral on implementation
details and gives you space. Also
provides extension system.

HOW DID I GET
HERE?

Response to the typical problems

› Multiple round trip requests
› Bloated responses
› Content discovery

They all have known solid solutions!

1.
TRANSPORT

FORMAT
The shape of the JSON object

FORMAT

Supporting
Structure

(GLUE)

Resource data
Info
(ID)

Attributes
&

Relationships
(DATA)

HATEOAS
&

Metadata
(HYPERMEDIA)

{
“data”: {

“type”: “articles”,
“id”: “1”,
“attributes”: {…},
“relationships”: {…},

},
“links”: {…},
“meta”: {…}

} FORMAT

{
…

“attributes”: {
“title”: “Drupal 8!”,
“body”: “Lorem ipsum”
…

},
…

}
FORMAT

 …

“relationships”: {

“links”: {

“self”: “articles/1/relationships”

},

“tags”: {

“data”: [{

“type”: “tags”,

“id”: “2”

}]

}

… FORMAT

2.
RESOURCE

INTERACTION
How do we get and update data

Uses REST
GET, POST, PUT, PATCH, DELETE, …

Typical request

GET /articles HTTP/1.1
Accept: application/vnd.api+json

RESPONSE
/jsonapi/node/article

Response to the typical problems

› Multiple round trip requests
› Bloated responses
› Content discovery

They all have known solid solutions!

The typical solutions

› Multiple round trip requests
› Resource embedding

› Bloated responses
› Sparse fieldsets

› Content discovery
› Collections and filters

Place your screenshot here

EXTREMELY SIMPLE
Your project will have
way more stuff than
this!

› 1: GET articles/12
› 2: GET articles/12 => tags/34
› 3: GET articles/12 => tags/88
› 4: GET articles/12 => users/88
› 5: GET articles/12 => users/88 => images/5
› 6: GET articles/12/comments
› 7: GET articles/12 => comment/2
› 8: GET articles/12 => comment/2 => user/8
› 9: GET articles/12 => comment/2 =>

user/8 => image/9
› 10: GET articles/12 => comment/7 […]
› 11: GET articles/12 => comment/7 […]
› 12: GET articles/12 => comment/7 […]
› MORE!

GET /articles/12?

include=
 author,author.pic,
 tags,
 comment,comment.author,
 comment.author.pic

Resource
embedding

GET /articles/12?

fields[articles]=
 title,
 created

Sparse
fieldsets

…
“attributes”: {
 “title”: “My article”,
 “uuid”: “12345-1234-34”,
 “created”: “10-05-2012”,
 “status”: “1”,
 “body”: {…},
 “langcode”: “en”
}
…

“Give me the cover image and the
publication year of all the albums of all
the bands having one of the members

under 35 currently living in Murcia.

Oh! And while you're at it, output the
name of the band and that member as

well.”

GET /bands?

filter[members.city][value]=Murcia&

filter[members.age][value]=35&

filter[members.age][operator]=”<=”&

include=albums,albums.cover,members&

fields[bands]=name,albums,members&

fields[members]=name&

fields[albums]=publication&

fields[images]=uri
Collections
and filters

Every API consumer requests the
resource data it needs. It can be different
every time.

WRITE
URL QUERIES

Every consumer has different
data needs. The server (Drupal)
cannot choose what those are.

1. /bands/1234
› GET, PUT, PATCH, DELETE

2. /bands
› GET, POST

3. /bands/1234/albums
› GET

4. /bands/1234/relationships/albums
› GET, PATCH

Every resource 4 “endpoints”

3.
PERFORMANCE

How fast is the Drupal module?

Benchmarking JSON API

› ab -v4 -k -c8 -n10 -A u:p
› node:2100
› include

› Author
› Author image

› Tags (2 tags)

Benchmarking core HAL JSON

› ab -v4 -k -c8 -n10 -A u:p
› node:2100
› user:1105
› file:156 (slow path)

› tag:11
› tag:18

Results (core): anonymous

user:1105
node:2100

file:156
tag:11
tag:18

~ 21 ms

Using Keep Alive

Results (jsonapi): anonymous

user:1105

node:2100

file:156

tag:11

tag:18

~ 7 ms

node:2100 include:author,author.pic,tags

Core (ms) {json:api} (ms)

Anonymous 21 7

Auth 320 115

Uncached 392 182

https://gist.github.com/e0ipso/4b1b346b296fbf0c918450fef5b0b3d7

AVOID
BOOTSTRAPS
And unnecessary HTTP round trips.

4.
DRUPAL MODULE

Our implementation of the standard.

drupal.org/project/jsonapi
That was expected, wasn’t it?

Drupal Integration

› Zero configuration
› Integrates with Authentication Providers

› OAuth 2 Bearer Token (via simple_oauth)
› Tied to the entity system

› Content
› Config

› Full cacheability metadata support
› Great tandem with computed fields

Oriented to entity bundles

› Each resource is a bundle (content type)
› /jsonapi/node/page
› Automatically enabled (can be disabled)
› You can do any entity query as filter

Automatic schema generation

› Separate contrib: Schemata
› drupal.org/project/schemata

› Uses type data to generate the schema
› /schemata/node/page
 ?_format=schema_json
 &_describes=api_json

Schema usages?
GENERATE DOCS

drupal.org/project/docson

Schema usages?
GENERATE FORMS

Schema usages?
VALIDATE DATA

Schema usages?
GENERATE CODE

Limitations

› File integration needs some work
› Extensible through code only
› Limited to the entity system

Open challenges

› Consumer routing based on path alias
› Responsive images and image styles
› Versioning content model in Drupal
› Multiple-operation requests

› drupal.org/project/subrequests
› Data pre-processing on client request
› Aggregated values

› DISTINCT, SUM, AVERAGE, MAX, …

Join us for contribution sprints!
Friday, April 28, 2017

First-Time Sprinter
Workshop

9:00am-12:00pm
Room: 307-308

Mentored Core
Sprint

9:00am-12:00pm
Room:301-303

General Sprints

9:00am-6:00pm
Room:309-310

Credits

Special thanks to all the people who made
and released these awesome resources for
free:
› Presentation template by SlidesCarnival
› Photographs by Startupstockphotos
› Creative Commons images

http://www.slidescarnival.com/
http://startupstockphotos.com/
https://gist.github.com/e0ipso/7cdae59c167f2e021b485647414364a6
https://gist.github.com/e0ipso/7cdae59c167f2e021b485647414364a6

Evaluate this session
events.drupal.org/baltimore2017/schedule

What did
you think?

https://events.drupal.org/node/add/session-evaluation?field_eval_session=16900

https://events.drupal.org/node/add/session-evaluation?field_eval_session=16900
https://events.drupal.org/node/add/session-evaluation?field_eval_session=16900

