
Build Powerful FrontEnd
Workflows with PostCSS

Guide to writing/generating cutting edge CSS

Key TakeAways

PostCSS - Deep Dive
plugins you can use
custom plugins

Workflow
Essential Concepts
Plugins to help with tasks

Drupal Theme
Starter Template

Introduction AdvancedEssential

Introduction
what - why - how

What is it?
Microservice Architecture
Single Responsibility Principle
Installation
Gulp Script

Philosopher’s Stone

Alchemy

What is PostCSS?

Transformer!

A Workflow Tool - (post/pre)processor

Language Extender

CSS Wayback/Time Machine

Collection of API &
Micro Services

architecture

Architecture

What does PostCSS do?

Parses CSS
Creates Node Tree

Provides APIs for processors
Pipes between processors

Plugin Design Principle

Single Responsibility Principle
Do one thing and do well

Node Modules
Written in JS

You have a plugin for that! PostCSS.parts

200+

Why roll yours in PostCSS?

Choice - freedom to choose

Usage - tailor to your workflow

Modular/ lightweight hence faster

Limitations of pre-processors

@extend across media queries

Automatically fix errors

Feature Requests and how it is handled

Installation and First Task

Required Tools

Node.js

NPM - Dependency Management System

Gulp/Grunt - The task runner

Workflow Anatomy

Installation

Install Node

Gulp Task

Essential
PostCSS

Build custom workflow

Requirements of a Workflow?
Autoprefixer
Linting
futureCSS
Quantity Queries
Container Queries
CSS Modules
Packs

Workflow Goals

ENVIRONMENT

Mechanical Rules
Enforcement
Debug
Linting
Easy SetUp

CODE HELPERS

Future Proofing
Fallback Support
Language Extensions
Shortcuts
Utilities

Toolchain

ENVIRONMENT

Mechanical Rules
Enforcement - stylelint
Debug - sourcemaps
Linting - stylelint
Easy SetUp - npm
I/O - import/cssnano

CODE HELPERS

Fallback Support - oldie
Future Proofing - cssnext
Language Extensions precss
Shortcuts - short
Utilities - lot

ENVIRONMENT

Importer - postcss-import
Before

PostCSS - CSS

Linters - Stylelint

StyleLint
Mechanical Rules Enforcement
Over 100 Rules
Choose the ones you want

Linters - Stylelint

Packers
cssnano
Does minify and some errors.

postcss-css-mqpacker
Concats all styles of same media query.

postcss-cachebuster
Busts assets cache using url params.

postcss-data-packer
embedded base64 to separate file.

Source Maps

Style Guides

postcss-style-guide, psg-theme-default

Provides KSS Style Living Guides
Uses Annotation to generate HTML

Style Guides

CODE HELPERS

Future CSS

Future CSS
postcss-custom-media
postcss-custom-properties
postcss-extend
postcss-initial
postcss-media-minmax
cq-prolyfill

PostCSS Extend

example from plugin page

Container Queries

cq-prolyfill

Quantity Queries

postcss-quantity-queries

:at-least(count)
:at-most(count)
:between(start,end)
:exactly(count)

CSS Modules

postcss-initial

{all:initial}

CODE HELPERS

Language Extenders

Pre/post compiler

PRE COMPILER

write code in
scss/less/stylus, gets
converted into css.

precss

POST COMPILER

write CSS Code, gets
converted into CSS.

cssnext

Pre/post compiler

PRE COMPILER

mixins needs to be
learned, their APIs

provides sass like
mixins, functions etc.

POST COMPILER

plain CSS, which is
parsed by Autoprefixers

uses W3C css Variables

CODE HELPERS

Utility Plugins

Utility Plugins

autoprefixer
pxtorem
postcss-sorting
perfectionist
postcss-font-pack
postcss-fontpath

Utility Plugins - AutoPrefixer

refers caniuse.com to generate
does not generate for border-radius etc…
http://autoprefixer.github.io/

http://autoprefixer.github.io/
http://autoprefixer.github.io/

Utility Plugins - pxtorem

Packs

Curated plugins

Takes care of interplay

Does heavy lifting

Packs
cssnano - packer, optimizer for production
rucksack - new features and shortcuts
short - shorthand properties
precss - language extender
cssnext - language extender (W3C)

https://github.com/timaschew/postcss-
compare-packs

https://github.com/timaschew/postcss-compare-packs
https://github.com/timaschew/postcss-compare-packs
https://github.com/timaschew/postcss-compare-packs

Advanced
Beyond the Basics

Write your own plugin
CSS Architecture
BEM / SMACSS Organization
Putting it all together

PostCSS Boilerplate
postcss-plugin-boilerplate

Wizard to help creation
Clean git history
Write index.js and test.js
Document

Examine a plugin

Anatomy of a Plugin

this is postcss-currency plugin

https://github.com/talgautb/postcss-currency

CSS Architecture

Architecture Challenges

Abstraction
Maintainability
Change Management

Debugging
Documentation

SMACSS
Categorizing / Organizing CSS Rules

Base - base level CSS
Layout - layout based classes (l-)
Module - reusable modules
State - state of an item is-active
Theme - related to colors

Reduced dependency on structure
Thinking in Components

Block Element Modifier
Rules to Name selectors

Theming Process

Component Inventory - ppt
Component Library - code

Layout Pages
Composition of Components

Oddball Components
Context based alignment/changes

End To End Workflow

CLASSY THEME
Configure with postCSS
Folder Structures
Plugins

Code Organization
Debugging - source maps
Linting

DEMO & CODE WALKTHROUGH

Summary
What is PostCSS
Architecture
Why PostCSS
How To start coding in PostCSS

Workflow Goals
PostCSS Tools that support
Useful Plugins

Write Plugin
SMACSS/BEM
All together

Appendix - UseFul Links
PostCSS Page

Plugins List
PostCSS.parts

cssnext
precss

compare css packs

BEM
SMACSS

https://github.com/postcss/postcss
https://github.com/postcss/postcss
https://github.com/postcss/postcss/blob/master/docs/plugins.md
https://github.com/postcss/postcss/blob/master/docs/plugins.md
http://postcss.parts
http://postcss.parts
http://cssnext.io/
http://cssnext.io/
https://github.com/jonathantneal/precss
https://github.com/jonathantneal/precss
https://github.com/timaschew/postcss-compare-packs
https://github.com/timaschew/postcss-compare-packs
https://en.bem.info/method/
https://en.bem.info/method/
https://smacss.com/
https://smacss.com/

