
Choosing The
Right Agile

Methodology
For Your

Drupal Project

Prabhat Sinha

Shani Memfy

Speakers

Prabhat Sinha

He has been managing product and
project since 8 years. After work Prabhat
can be found jogging and socializing at
local parks.

Prabhat lives in the bustling city New Delhi
with his wife and 2 kids.

Shani Memfy

She’s been managing product and project
deliveries since 1999. After work you can
find her on the court shooting hoops with
a local Netball league.

Shani lives in a suburban city in Israel with
her husband and 4 children.

https://en.wikipedia.org/wiki/Netball

Agenda

1. What is Agile
2. Agile Frameworks

● Scrum
● KANBAN
● Scrumban
● Extreme Programming
● Lean
● Feature Driven development

3. Comparison
4. CYNEFIN

Better ways of developing software is by doing it and helping others do it.
Agile gives importance to:

● Individuals and interactions over processes and tools

● Working software over comprehensive documentation

● Customer collaboration over contract negotiation

● Responding to change over following a plan

What is Agile?

12 Principles of Agile Manifesto

Our highest priority is
to satisfy the customer
through early and
continuous delivery of
valuable software.

Welcome changing requirements,
even late in development. Agile
processes harness change for the
customer’s competitive advantage.

Deliver working software frequently,
from a couple of weeks lo a couple
of months, with a preference to the
shorter timescale.

Business people and
developers must work
together daily
throughout the project.

Build projects around motivated
individuals. Give them the
environment & support they need,
and trust them to get the job done.

Agile processes promote
sustainable development. The
sponsors, developers, and users
should be able to maintain a
constant pace indefinitely.

Working software is
the primary measure of
progress.

The most efficient and effective
method of Conveying information
to and within a development team
is face-to-face conversation.

Continuous attention to technical
excellence and good design
enhances agility.

Simplify--the art of
maximizing the
amount of work not
done--is essential.

The best architectures,
requirements & designs
emerge from self-organizing
teams.

At regular intervals, the team
reflects on how to become more
effective, then tunes and adjusts its
behavior accordingly.

01

04

07

10

02

05

08

11

03

06

09

12

There are several agile project management frameworks being successfully used
for delivering Drupal projects. Let’s evaluate few popular agile frameworks:

1. Scrum
2. Kanban
3. Scrumban
4. Extreme Programming
5. Lean Development
6. Feature driven development

In next few slides we will discuss each frameworks
one by one and Help you choose the most fitting
for your projects.

Agile Is a Methodology Only

AGILE

Extreme
Programming

(XP)

Scrum

Kanban

Lean

FDD

against a similar group from the opposing side.Scrum doesn’t work when the team is not working to a shared goal

and push forward

An ordered formation of players, used to restart play, in which the forwards of a
team form up with arms interlocked and heads down, and push forward against a
similar group from the opposing side.No distractions

Scrum

Scrum is an Agile framework that brings order to chaos.

Scrum comes from Rugby:

An ordered formation of players used to restart play

in which the forwards of a team form up with arms interlocked

and heads down,

The cross functioning team Sprint

PO, SM &
the team

Scrum in a Nutshell

The project requirements

● Clear vision of the end
product

● A clear set of requirements
(user stories)

○ Product Backlog at
least for the upcoming
2 sprints

● Objective to add small
marketable values in each
increment

○ PSP: potentially
shippable product

○ MMF: minimal
marketable feature

The Team

 Product Owner, Scrummaster and

Team

● Well-trained
● Specialized
● Capable of Self-management
● Communicative
● Ability to Make Decisions
● Common Goal
● Self Improving

Processes & Tools

● Sessions
○ Scrum Meeting (daily)
○ Backlog Refinement

grooming (1 or 2 per
Sprint)

○ Sprint planning 1 or 2
per Sprint)

○ Demo or Review (end
of Sprint)

○ Retrospective (end of
Sprint)

● Product Backlog
● Tools

○ Scrum Board
○ User Stories
○ Burn Down Chart
○ Timeboxing
○ Icebox

Team:
● The WHOLE scrum team is

onboard and committed
● Stakeholders have the

project as a priority—not
necessarily a top priority, but
available for answers

● Team is focused: don't get
many interruptions from
everyday business

● The team is fully skilled team
to match the project

● The team has the ability to
communicate frequently and
easily (daily stand ups, etc.)

Output:
● Something to show at the

end of the sprint

● The team gets a full sprint to
produce value without any
interruptions

● Anything after that may be
subject to change, this is
where a sprint really lives up
to its name

When to choose Scrum

Tools:
● A clear vision of the end

product
○ There needs to be

enough of a product
backlog for a few sprints
(2-3)

■ There can be
changes but the
team shouldn’t
stop working to
adapt to change

○ Scrum projects can
change direction as long
as the product backlog is
maintained and groomed

● Sprint scope frequently changed due to “high priority”/ emergency situations

● Scope isn’t clear or is blocked

● Basic Scrum rules not fully enforce

● Releases start to be ad hoc

● No clear distinction between Project and Product

● Addressing maintenance and support work as main sprint goal

● Team dedication is erratic

When should Scrum turn to Kanban and Scrumban

KANBAN

Kanban is a visual signal that's used to trigger
an action. The word kanban is Japanese and
roughly translated means: “card you can see.”
Toyota introduced and refined the use of
kanban in a relay system to standardize the
flow of parts in their just-in-time (JIT) production
lines in the 1950s.

"Kanban promotes flow and reduced cycle-time
by limiting WIP and pulling value through in a
visible manner."
-Torbjörn Gyllebring

KanBan in a Nutshell

The project philosophy

● Kanban doesn’t prohibit
change, but it doesn’t
prescribe it either.

● Kanban encourages
making incremental
changes to avoid drastic
decrease in productivity

● Small course corrections
are also just easier than
altering the complete
process

● Vision of the end product

The Team

● Technical needs as per
requirement of the
project

Kanban recognizes that there
may be value in the existing
process, roles and
responsibilities

Take what is working and
preserve it.

Processes & Tools

● Sessions
○ Meeting (daily)

■ Often those that have
converted from Scrum
to Kanban,are inclined
to keep the daily
stand-up

● Product Backlog
○ Team to pull the tickets

● Tools
○ Kanban board
○ WIP limits

■ Limiting the amount of
WIP, at each step in the
process, prevents
overproduction and
reveals bottlenecks
dynamically so that you
can address them
before they get out of
hand.

When to choose Kanban

● Operation support
○ Running a production system as a whole,

● Maintenance work and support projects
● Continuous flow

○ No nee0d to stop to reassess just keep on going and deploying
● When the project requires the maximum flexibility and frequent

change of priorities and scope
○ When the goals are not clearly defined
○ Risk of scope creep

● Ad hoc releases required
● Team dedication is erratic

○ When team isn’t focused - responsibilities elsewhere.
● If management isn’t ‘into scrum’

○ Management isn’t giving the needed time and attention to the project

Focus

Courage

Openness

Respect

Commitment

SCRUMBAN

Mix of scrum and Kanban

Scrumban is a management framework
that emerges when teams employ Scrum
as their chosen way of working to
understand and continuously improve how
they work and use the Kanban Method as
a lens through which to view (kanban
board)

Scrum Kanban Scrumban+ =

● Scrumban comes into play to help teams with the transition from Scrum to Kanban. Can stay here a
while

●
● Scrum-ban is still unclear. Is it an improved Scrum or and improved Kanban
● Scrumban is not unique to the software development process

ScrumBan in a Nutshell

The project philosophy

Improvement on;
● Roles
● Work processes
● Better flows
● Flexibility

The Team

Like Scrum
● Cross functional
● Allowing for specialized

teams and functions
● Dedicated team

Processes & Tools

● Sessions (The Scrum)
● Stand up for daily check in
● Retro for team

improvement
● Review- for incremental

releases to demo to the
client

● Product Backlog

● Tools (The Ban)
○ Kanban board
○ Ad hoc release
○ Continuous flow
○ WIP limits
○ Pulling tickets
○ Grooming on demand

When to choose Scrumban

● Any Scrum with an unstable and/or moving vision
○ When the project requires the maximum flexibility and frequent change of priorities and scope
○ When the goals are not clearly defined
○ Constantly evolving product
○ Sprint planning isn’t happening

● If management isn’t ‘into scrum’

○ Management isn’t giving the needed time and attention to the project

● Any Kanban project that needs the structure of Scrum
○ Hard deadline

■ Still working to the objective
○ Team not focused

Extreme Programming (XP)

Extreme Programming (XP) is another agile development framework, focussed on improving software
quality and responsiveness to evolving client requirements. Extreme programming advocates frequent
releases in short development cycles in order to improve productivity and introduce checkpoints so that new
requirements can be accommodated.

Planning Game
Small Releases

Metaphor

Simple Design
Testing

Refactoring

Pair Programming
Integration

Collective Ownership

On–site Customer
40–Hour Work Week
Coding Standards

Other elements of extreme programming are: programming in pairs, code reviews, unit testing of all
codes, avoiding programming of features—until they are actually needed, a flat management structure,
simplicity, and clarity in code.

Software
Development

Extreme Programming XP (Prabhat)

● Extreme programming is
code first approach to
software delivery and
emphasizes on four basic
activities: coding, testing,
listening, designing.

● Extreme programming
brought testing at the
forefront of the delivery
process which helped with
evolution of core software
engineering.

● Practices like: automated
testing, refactoring,
continuous integration,
and test driven
development.

Planning

Design

Testing

Coding

Simple design
CRC cards

Spike solutions
prototypes

Refactoring

Pair Programming

Unit Test
Continuous
IntegrationRelease Acceptance Testing

User stories values
acceptance test

criteria iteration plan

Project velocity
computed

Advantages & Disadvantages of Extreme Programming

Advantages

● Pair programming under XP helps in
writing better codes

● Increased team accountability
● Extreme Programming manages risks in a

better way
● Source code is always robust as simplicity

helps in faster development and less
defects

● Easy to accommodate changes

Disadvantages

Detailed planning is required right since the
inception of XP due to changing scope and
associated cost

● XP does not have a set measurement plan
or quality assurance for coding.

● Pair programming may lead to too much
duplication of codes and data.

● XP is more code centric than design which
may cause UI/UX issues in larger projects.

XP in a Nutshell

The project philosophy

● Code first
● Refactoring
● Simple designs
● Spike solutions

The Team

Team Size - 5 or less
● Tracker, Customer,

Programmer, Tester,
Coach

● Well-trained
● Specialized
● Co-located

Processes & Tools

● Pair programming
■ Planning game

● Release Plan
■ Iteration plan

● Project velocity

● Iteration - Usually 1 week
long

Practices
● Test driven development
● Continuous Integration
● Collective code ownership

When to use XP

When to use

● Have reached a certain level of maturity as usual tasks, defects

and smaller unrelated user stories

● Require maximum flexibility and frequent change of priorities

● Have multiple releases per week or per day

● Have many unscheduled releases

● Have less cross functional teams

Maturity

Flexibility

Unscheduled
Releases

Less cross
functional team

Lean Development

● Lean was adopted for the software industry in the
year 2000

● Later on lean was applied for startups in a book
“Lean Startups” by Eric Reis as a way of developing
new product and services in circumstances of
extreme uncertainty.

● A typical lean process: Learn-Measure-Build cycle,
performs quality analysis, and testing, frequently
connects with clients to understand the business
value and focuses on continuous improvement

● The continuous cycle leads to sustainability, smart
development, and success

Problem Solutions Key Metrics Cost
Structure

Revenue
Stream

ChannelAdvantage

Advantages and Disadvantages of LEAN

Advantages

● Complements existing practices.
● Focuses on project ROI.
● Eliminates all project waste.
● Cross-functional teams.

Disadvantages

● Does not specify technical practices.
● Requires constant gathering of metrics

which may be difficult for some
environments to accommodate.

● Theory of Constraints can be a complex
and difficult aspect to adopt.

Lean in a Nutshell

Key Principles

1. Eliminate Waste
2. Build Quality “in”
3. Create Knowledge
4. Defer Commitment
5. Deliver Fast
6. Respect People
7. Optimize the Whole

The Team

● Well-trained
● Specialized
● capable of

self-management
● Communicative
● Ability to make decisions

Processes and Tools

● Sessions
○ Daily Stand up

meetings
○ Operations Review

● Tools
○ Cumulative Flow

Diagrams
○ Visual Controls
○ Virtual Kanban

Systems

● Iterations
○ Small Batch sizes
○ Automation

Feature Driven Development

● Feature Driven Development is a pragmatic software process which is architecture
centric and focused to achieve the goal of client.

● Feature Driven Development was introduced in 1999 in a book named “Java
modeling in color with UML.”

● As the name suggests, features are an important aspect of FDD. These are the
primary source of requirements and primary input into the planning efforts in FDD.

● A feature is a small, client-valued function expressed in the form:
<action><result><object>.

Feature Driven Development

Develop
an Overall

Model

Build a
Features

List

Plan by
Feature

Design by
Feature

Build by
Feature

(more shape
than content)

An object model
+ notes

A list of features
grouped into sets
And subject areas

A development plan
Class owners

Feature set owners

A design package

(add more content to
the object model)

Completed
client-valued

function

Initial
Modeling

Model
Storming

Advantages & Disadvantages of Feature Driven Development

Advantages

● Supports multiple teams working in
parallel

● All aspects of a project tracked by feature
● Design by feature and build by feature

aspects are easy to understand and adopt
● Scales to large teams or projects well

Disadvantages

● Promotes individual code ownership as
opposed to shared ownership

● Iterations are not as well defined by the
process as other agile methodologies

● The model-centric aspects can have huge
impacts when working on existing systems
that have no models

FDD in a Nutshell

The project philosophy

● Multiple teams working
on the same project.

● Tracking through
features

● Model Centric Approach

The Team

● Project Manager
● Chief Architect
● Development Manager
● Chief Programmer
● Class Owner
● Domain Expert

Supporting roles

● Domain manager
● Release Manager
● Language Guru
● Build Engineer
● Toolsmith
● System Administrator
● Tester
● Deployer
● Technical Writer

Processes & Tools

● Develop an overall model
● Build a feature list
● Plan by feature
● Design by feature
● Build by feature

Practices

● Domain Object Modeling
● High level class diagrams
● Developing by feature
● Individual class ownership
● Reporting visibility of reports

Comparison table

Scrum Kanban Scrumban

Artifacts

simple board , product backlog,
sprint backlog, product increment,
burndown chart mapped on the process board mapped on the process board

Board Clean board for start of sprint same board continually used same board continually used

Ceremonies

daily scrum, sprint planning
sprint review
sprint retrospective on demand and optional Defined by the team

Teams & Roles SM, PO, Team, Small to Medium

Cross functional / specialized
teams with a possibility Agile
coach, Small to Medium

Cross functional / specialized
teams with a possibility Agile
coach, Small to Medium

Iterations Incremental Improvements
Constant Stream (not have
predefined)

Incremental Improvements OR
Constant Stream

Task Assignment Assigned to team Pulled by the team member Taken by each team member

prioritization
Part of backlog grooming, done
by PO

Out of the process. Backlog
should be prioritized

Out of the process. Backlog
should be prioritized

performance metrics Burn down chart
lead and cycle time and
cumulative flow

lead and cycle time and avg cycle
time

Comparison table

Extreme Programming FDD Lean Development

Artifacts
Release Plan, Metaphor, Iteration
plan

Features, high level class
diagrams

Cumulative Flow Diagram, Virtual
Kanban Board

Board Clean board for start of sprint Feature board Same board continually used

Ceremonies
daily meeting, planning game
on demand on demand and optional

Daily Stand up and operation
review

Teams & Roles
Tracker, Customer, Programmer
Coach

Project Manager, Chief Manager,
Architect, Class owner and so on

cross functional / specialized
Agile coach

Iterations Incremental Improvements Feature Development
Incremental Improvements OR
Constant Stream

Task Assignment Assigned by the customer Assigned to the team member Pulled by the team member

prioritization Done by Customer
Done by Project Manager or
Architect

Done based on the business
value

performance metrics Release plan
lead and cycle time and
cumulative flow

lead and cycle time and avg
cycle time

https://docs.google.com/spreadsheets/d/1xaHhoWAm1sk
07DpbyAzRuK4n80TNO4ZhZKTMPRBUL_Y/edit#gid=14834
1833

https://docs.google.com/spreadsheets/d/1xaHhoWAm1sk07DpbyAzRuK4n80TNO4ZhZKTMPRBUL_Y/edit#gid=148341833
https://docs.google.com/spreadsheets/d/1xaHhoWAm1sk07DpbyAzRuK4n80TNO4ZhZKTMPRBUL_Y/edit#gid=148341833
https://docs.google.com/spreadsheets/d/1xaHhoWAm1sk07DpbyAzRuK4n80TNO4ZhZKTMPRBUL_Y/edit#gid=148341833
https://docs.google.com/spreadsheets/d/1xaHhoWAm1sk07DpbyAzRuK4n80TNO4ZhZKTMPRBUL_Y/edit#gid=148341833

Which Methodology is right for you

We know about all the methodologies, advantages and
disadvantages now.

Now comes the question - which methodology is right for you?

Let’s use popular decision making framework CYNEFIN for it.

CYNEFIN

CYNEFIN describes the problem, situation, and systems—with the help of research—into
adaptive system theory, cognitive science, narrative patterns, and evolutionary psychology

Further it explores relationship between context, experience, and the person to propose
new approaches to communication, decision-making, policy making, and knowledge
management

● The term CYNEFIN was first coined by Welsh Scholar “Dave Snowden”

● George W. Bush administration used CYNEFIN for analysing policy and the impact of
religion in process

● CYNEFIN provides a typology of contexts that guides what kind of explanation or
solution may apply

● CYNEFIN has 5 domains: obvious, complicated, complex, chaotic, disorder

Chaotic
Lacking Constraint De–Coupled

act–sense–respond
Novel Practice

Obvious
Tightly Constrained No Degrees of Freedom

sense–categorise–respond
Best Practice

CYNEFIN

ComplicatedComplex
Enabling Constraints Loosely Coupled

probe–sense–respond
Emergent Practice

Governing Constraints Tightly Coupled
sense–analyse–respond

Good Practice

Obvious

Sense, Categorize, Respond

● No analysis required

● Cause and effect repeatable, known and predictable

● We use best practices for it

● Need to follow standard operating procedures

● Automation can also do the job

● Data provides answers

Complicated

Sense, Analyze, Respond

● Cause and effect separated over time and space

● We use our good practices

● We do predictive planning and expert analysis to reach the solution

● Data provides options, experts analyze and measure goodness

Probe-Sense-Respond

● Cause and effect seen in retrospect and do not repeat

● We use emergent practices for it

● We do sensemaking, stories and monitor coherence to find the solution

● We need to do pattern management and heuristics.
○ For example: more stories like this, less like this

Complex

Chaos

Act, Sense, Respond

● Cause and effect not usefully perceivable

● Act to bring stability and crises management

● Experience informs decision, action is required

● Noble practices are discovered

Q & A

Thank you!!!

