
@ChromaticHQhttp://chromatichq.com

http://chromatichq.com

Code Standards:
It's Okay to be Yourself, But Write

Your Code Like Everyone Else

Alanna Burke

@aburke626

Twitter, Drupal.org

DrupalCon Baltimore 2017

What are Coding Standards?

stand·ard

/ˈstandərd/

noun

1. a level of quality or attainment.

Types of Standards
• Style

• indentation

• spacing

• line length

• Substance

• correct use of functions and components

Why are they important?
“The point of a coding style standard is not to say one style is objectively

better than another in the sense of the specific details … Instead, the

point is to set up known expectations on how code is going to look.”

- Paul M. Jones

http://paul-m-jones.com/archives/34

http://paul-m-jones.com/archives/34

Why are they important?
• Keep code readable.

• Spend less time worrying about what your code looks like, and more

time coding.

• Help bridge the gap between coders of different backgrounds, languages,

locations - especially important in OSS projects such as Drupal where

developers from around the world work on the same code.

• Automation (we’ll get into this more later).

Who decides coding standards?
We do! Standards are decided by the Drupal community.

How are they decided?
• Drupal’s standards are based on the PEAR coding standards.

• They are decided in an issue queue on drupal.org.

http://drupal.org

How do we implement
Coding Standards?

Read the coding standards and
keep them handy.

• They’re a living document - they can change!
• Make sure you have them bookmarked for reference.

https://www.drupal.org/coding-standards

Set up your editor for success

Let your editor do the work!
• Sublime Text
• PHPStorm
• Others

Review your own code with
Coder/PHPCodeSniffer

https://chromatichq.com/blog/learn-and-enforce-coding-standards-php-codesniffer

https://chromatichq.com/blog/learn-and-enforce-coding-standards-php-codesniffer

Team Code Reviews
• Make the time!

• The most successful teams build in time to review one
another’s code.

• There’s no substitute for code reviews by another person.

• Make sure that you view them as an essential part of your
process.

• https://chromatichq.com/blog/code-reviews-are-worth-their-weight-gold

https://chromatichq.com/blog/code-reviews-are-worth-their-weight-gold

Two things to remember:
1. Treat others as you would like to be treated - Be kind,

courteous, respectful, and constructive. Be aware of your tone.

2. Take everything in stride, and don’t take it personally. Those

reviewing your code want it to be good, and corrections aren’t

a personal attack.

Formatting

Indentation
• Two spaces.

• This is easy to set up in Sublime Text:

Whitespace
• No trailing whitespace! (This means no spaces or tabs after the

end of a line.)

• This can also be set up in your editor.

• Use blank lines sparingly to keep crowded code readable, if

necessary.

• But try to avoid extra blank lines throughout your files and

functions.

File endings
• Drupal uses Unix file endings. (The difference between Windows

and Unix file endings is what characters are put to indicate the end

of the file.)

• There must be a single blank line at the end of each file.

• Another thing most text editors can do for you!

Arrays
• New short array syntax standards!

• ["kittens", "puppies", “bunnies”] ✅

• old arrays:

• array("cows", "chicken", “sheep") ❌

From drupal.org: Please note, short array syntax is unsupported in versions of

PHP prior to 5.4. This means that Drupal 7 core and Drupal 7 contributed

projects without an explicit PHP 5.4+ requirement must use long array syntax.

http://drupal.org

Line Length - Arrays
If you have an array declaration that’s longer than 80 characters, split it

into a multi-line array, like so:

$items['advanced_forum_l'] = [

 'variables' => [

 'text' => NULL,

 'path' => NULL,

 'button_class' => NULL,

],

];

Line Length - Arrays
• Each item is on its own line.

• Each item is followed by a comma, even the last item.

• This is Drupal best practice regarding arrays in PHP.

Line Length - Arrays
• If you have a super long array (100s of items), you could break each

item into its own line.

• That would be very long, but very readable.

• If the programmer who looks at this code next is unlikely to need

this info at their fingertips, consider importing it from a csv file

or similar, and keeping it out of your code.

Line Length
• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

• Lines should be 80 characters long.

• If breaking up your code over multiple

lines makes it less readable, reconsider!

• The goal is readability.

• Comment and documentation text,

should always be 80 characters or under.

• Set up a ruler in your editor.

Operators
• There should always be one space around operators.

(=, -, +, *, =>, ., etc).

• You do not need spaces just inside of parentheses.

Operators

if($a='system'||$b=='system'){

 return $a=='system'?-1:1;

}

if ($a == 'system' || $b == 'system') {

 return $a == 'system' ? -1 : 1;

}

And properly formatted:

Here’s an example without proper

spaces, to show how difficult it is

to read:

Function Calls & Declarations
• When declaring a function, there should always be a single space

after the argument list and before the opening curly brace.

• The function then begins on the next line, indented with 2 spaces.

• The closing brace goes on its own line.

Function Calls & Declarations
• A function call always has a set of parentheses, with no spaces on

either side of them, whether or not there are parameters.

• If there are parameters, they should be separated by a comma,

followed by a space.

Function Calls & Declarations
This update hook from the Advanced Forum contrib module is a

simple example of both a function declaration and function call:

function advanced_forum_update_7200() {

 if (variable_get('advanced_forum_forum_disabled') == NULL) {

 variable_set('advanced_forum_forum_disabled', FALSE);

 }

Constants
• Notice the all caps in the code on the previous slide?

• TRUE, FALSE, and NULL are always capitalized in Drupal code.

• They are constants, which are always in all caps in Drupal.

• Custom constants must be prefixed with the module name.

Constants
Here’s an example from the CKEditor module:

define('CKEDITOR_FORCE_SIMPLE_TOOLBAR_NAME', 'DrupalBasic');

define('CKEDITOR_ENTERMODE_P', 1);

define('CKEDITOR_ENTERMODE_BR', 2);

define('CKEDITOR_ENTERMODE_DIV', 3);

Control Structures
• When using control structures like if, else, elseif, case,

switch, foreach, while, do, etc., there should always be a

space after the control structure term.

• Also, there should always be a space before the opening curly brace.

• The statement is indented on the next line.

• The closing brace is on its own line.

• (much like functions)

Control Structures

if($foo) echo bar();

• Inline control structures are not permitted in Drupal, although they are valid

PHP. You should not use either of the following structures in Drupal:

if($foo)

 echo bar();

OR

Control Structures
• Control structures must always have braces, and the statement(s) must

always be on the next line.

• Note that in Drupal, the standard is to use elseif as one word, not

else if. Both are valid PHP, but the Drupal standards specify it as one

word.

Alternate control statement
syntax for theme templates

• Use if (): and endif; without braces.

• Statements must still be on their own line, as must the endif

statement.

Alternate control statement
syntax for theme templates
Here’s an example from the Zen subtheme:

<?php if ($comments && $node->type != 'forum'): ?>

 <h2 class="comments__title title"><?php print t('Comments'); ?></h2>

<?php endif; ?>

Casting
• The type is wrapped in parentheses.

• Always put a space between the type and the variable.

• Example from the Big Menu contrib module:

• Note that there is a space after (string) and after (int).

$p_depth = 'p' . (string) ((int) $depth + 3)

Semicolons
• Every PHP statement ends with a semicolon. Always!

;

PHP tags
• All PHP files begin with an opening tag: <?php but never, ever

use a closing tag!

• Also, never use php short tags (<? ?>)

• Why?

• Because whitespace or other characters after a closing tag can cause

errors, so allowing PHP to close it on its own eliminates those

errors.

Documentation

Why is documentation
important?

It tells us what to expect from our code.

But I know what my code
does!

But my code is so good, it’s
self-documenting!

Doc Blocks
• Specially formatted blocks of information that go both at the

top of each PHP file and before each function.

File Doc Blocks

• Go at the top of a file to give you an overview of what the file
contains.

• There should be one blank line between the opening <?php
tag and the doc block.

• First line: @file.

• On the next line after the @file tag: short description.

• The @file doc block may also commonly include @author
and @version.

File Doc Blocks
• Example from the Backup and Migrate module:

<?php

/**

 * @file

 * Create (manually or scheduled) and restore backups of your Drupal MySQL

 * database with an option to exclude table data (e.g. cache_*).

 */

File Doc Blocks
• In something like a template file, you’ll see more detail in the
@file doc block, because the rest of the file may not have as
much documentation.

• The @file doc block may often spell out available variables.

Function Doc Blocks
• A function doc block goes just before every function in every

PHP file.

• No exceptions.

• Ever.

• Only a one-line description is required.

• You should include any parameters and return types.

Function Doc Blocks

👍

/**

 * Restore from a file in the given destination.

 *

 * @param string $destination_id

 * The machine-readable path of the backup destination.

 * @param object|string $file

 * The file object, or its name.

 * @param object|array $settings

 * A settings object, or array to create a settings object.

 *

 * @return object|bool

 * Returns the file, or FALSE if the restore had any errors.

 */

Tags

8. @deprecated

9. @see

10. @todo

11. @Plugin and other annotations

• There are a variety of tags you can use in your doc blocks.

• They go in a certain order:

1. One-line summary, ending in a period.

2. Additional paragraph(s) of explanation.

3. @var

4. @param

5. @return

6. @throws

7. @ingroup

Tags

Here’s an example of
how the Countries
module uses some of
the other tags.

/**

 * Generate a country form.

 *

 * @ingroup forms

 *

 * @see countries_admin_form_validate()

 * @see countries_admin_form_submit()

 */

• Each type of tag should be separated by a blank line.

• The most-used tags are probably @param and @return.

Implements hook_xyz().
When implementing a hook (like hook_menu) simply put:

/**

 * Implements hook_menu().

 */

Implements hook_xyz().
If you put more than this, coder will give you a warning, like:

8 | WARNING | Format should be "* Implements hook_foo().", "* Implements

 | | hook_foo_BAR_ID_bar() for xyz_bar().",, "* Implements

 | | hook_foo_BAR_ID_bar() for xyz-bar.html.twig.", or "* Implements

 | | hook_foo_BAR_ID_bar() for xyz-bar.tpl.php.".

Implements hook_xyz().
Don’t duplicate function documentation. You’ll get a warning
like:

11 | WARNING | Hook implementations should not duplicate @param documentation

API Module
• Why are these docblocks so important?

• Why do they have to be formatted so exactly?

• The API Module parses the information in doc blocks into
human-readable documentation.

• The documentation found at https://api.drupal.org/ is all
generated this way.

https://api.drupal.org/

Inline Comments
• Drupal generally uses the C++-style // notation.

• C-style comments (/* */) are allowed, but discouraged
within functions.

• Inline comments shouldn’t follow a statement - this means
they must get their own line.

• Inline comments must always end in a full stop.

• Must never be longer than 80 characters.

Content Style Guide
• Drupal.org has a style guide for content on the site.

• Style of various industry-related terms, along with Drupal
specific terms.

• https://www.drupal.org/drupalorg/style-guide/content

https://www.drupal.org/drupalorg/style-guide/content

The t() Function

What does the t() function do?
• Translates a given string to a given language at run-time if you

have more than one language enabled.
• Allows for localization.

• Wrap your user-facing strings in this function so that they can
be translated.

• Depending on which placeholder you use, it runs different

sanitization functions.

When/where do I use it?
• Pretty much everywhere!
• Every user-facing string.
• This ensures your site can be localized.

• When in doubt, translate everything.

Parameters
1. The string to be translated.

2. (optional) Array of replacements, if any.

3. (optional) Array of options.

$options array
from drupal.org:

$options: An associative array of additional options, with the following elements:

* langcode (defaults to the current language): The language code to translate to a

language other than what is used to display the page.

* context (defaults to the empty context): A string giving the context that the source

string belongs to.

http://drupal.org

What is string context?
String context (or translation context) is a way to organize translations when words

have 1 to many translations.

From the handbook page:

• Each original (English) string can have only one translation.

• This is a problem when one English word has several meanings, like "Order", which can

mean the order of elements in a list, to order something in a shop, or an order someone has

placed in a shop.

• For many languages, the string "Order" needs a different translation for each of these

meanings.

Read More: https://www.drupal.org/node/1369936

Using Placeholders
• Placeholders come from the format_string function, which is called by t().

• The most common placeholder is probably @variable.

• This placeholder runs check_plain() on the text before replacing it.

• Never pass a variable through t() directly - only string literals.

• The short explanation for this is that the string to be translated needs to be

available at runtime, and a variable may not be available and may change its

value. You can find an in-depth explanation on StackExchange: http://

drupal.stackexchange.com/questions/9362/is-it-always-bad-to-pass-a-

variable-through-t.

Using Placeholders
Use a placeholder to insert a value into the translated text, like in this example from the

Advanced Forum contrib module:

$block->title = t(

 'Most active poster in @forum', array('@forum' => $forum->name)

);

%variable Placeholder
• Runs drupal_placeholder() on the text.

• Escapes the text.

• Formats it as emphasized text.

!variable Placeholder
Drupal 7

• Inserts your value exactly as is.

• Without running any sanitization functions.

• Never use this on user-entered text.

Drupal 8

• Deprecated.

:variable Placeholder
New in Drupal 8

• For use specifically with urls.

• Escaped with \Drupal\Component\Utility\Html::escape().

• Filtered for dangerous protocols using

UrlHelper::stripDangerousProtocols().

When don’t I use t()?
In Drupal 7, there are some instances where t() is not available.

• During the installation phase, t() isn’t available, so you must use get_t(). You can do

something like this:

• Translation is also not used inside of hook_schema() or hook_menu().

• In Drupal 8, t() is always available, so you can always use it.

$t = get_t();

$t(‘my string’);

t() and links - Bad Examples
• Do not concatenate t() strings around the link.

• Do not use a variable to insert the url & HTML markup into the text.

$do_not_do_this = t('Do not ') . "" . t('link

') . "" . t('to something like this.');

$bad = t('This is not a good way to make a @link.', array('@link' =>

'' . t('link') . ''));

t() and links - Bad Examples
• Do not insert the entire link markup and url directly into t().

• Do not insert the l() function into the t() function. It might seem good, but it’s

redundant.

$dreadful = t('This is a dreadful way to make a link pointing to the

Drupal API t() documentation.');

$awful = t('This may seem good, but it’s an awful way to link to this

@doc.', array('@doc => l(t(‘documentation'), 'https://

api.drupal.org'));

t() and links - Good Examples
• Use t() to insert the url.

$good = t('Read about the t() function here',

array('@api' => 'https://api.drupal.org'));

t() and links - Good Examples
Here’s an example from Drupal 8 Core using %variable and :variable, in the

function install_check_translations() in install.core.inc:

It’s okay to put a little html in your t() function to simplify like this.

'description' => t('The installer requires read permissions to

%translations_directory at all times. The webhosting issues documentation section offers

help on this and other topics.', array('%translations_directory' =>

$translations_directory, ':handbook_url' => 'https://www.drupal.org/

server-permissions')),

https://www.drupal.org/server-permissions
https://www.drupal.org/server-permissions

Translation Best Practices
• Think from the point of view of a translator.

• Try not to abstract out pieces of content too much.

Example:

• In English, you may have a blog titled "Bob’s Homepage."

• Your instinct may be to abstract it like so:

$username . "‘s " . t(‘Homepage.’);

Translation Best Practices
• What’s the problem here?

• In other languages, this phrase may be re-arranged.

• For example, in French or Spanish, it would be "Homepage de Bob.”

• This example would require a translator to change code.

$username . “’s ” . t(‘Homepage.’);

Translation Best Practices
• What’s the solution?

• Less abstraction:

• Can easily be changed without coding to:

t(‘@user’s Homepage.’, array(‘@username’ => ‘Bob’));

t(‘Homepage de @user.’, array(‘@username’ => ‘Bob’));

Concatenation Dos and Don’ts
• Don’t concatenate strings within t() - Even if you think you have to, there is a better way.

• And don’t concatenate t() strings and variables - you don’t need to!

This would also give you a codesniffer error because you should not have
leading or trailing whitespace in a translatable string.

t(‘Don’t try to join’ . ‘ ‘ . @num . ‘ ‘ . ‘strings.’, array(‘@num’ =>

‘multiple’));

t(‘This is a complicated way to join ’) . $mystring . t(‘ and

translated strings’);

Concatenation Dos and Don’ts
• Do this:

• This is how the t() function is designed to be used!

t(‘This is a simple way to join @mystring and translated strings’,

array(‘@mystring’ => ‘whatever my string is’));

Drupal 8 & Twig
• With Drupal 8, we have the Twig templating engine.

• This means new ways to format our text for translation in templates.

• The simplest way is to pipe your text through |t. Here’s an example from the Devel

contrib module:

<thead>

 <tr>

 <th>{{ 'Name'|t }}</th>

 <th>{{ 'Path'|t }}</th>

 <th>{{ 'Info file'|t }}</th>

 </tr>

</thead>

Drupal 8 & Twig
• The text is piped into the translation function.

• Just as it would be passed through t() in Drupal 7.

• You can also use |trans interchangeably with |t.

• You can use a {% trans %} block to translate a larger chunk of text or use

placeholders.

• These blocks can also handle logic for plurals.

Drupal 8 & Twig
• Here’s an example from Drupal 8 Core:

<h3 class="views-ui-view-title" data-drupal-selector="views-table-filter-
text-source">{{ view.label }}</h3>

<div class="views-ui-view-displays">

 {% if displays %}

 {% trans %}

 Display

 {% plural displays %}

 Displays

 {% endtrans %}:

 {{ displays|safe_join(', ') }}

 {% else %}

 {{ 'None'|t }}

 {% endif %}

</div>

Wrapping Up t()
• A lot of what-not-to-do, but now you know!

• Don’t get too creative!

• There is more to dig into with Twig & translations & logic.

• https://www.drupal.org/developing/api/8/localization

https://www.drupal.org/developing/api/8/localization

Object Oriented Coding &
Drupal 8

What is Object Oriented Programming?
• A way of programming that is based on the concept of objects, which

represent data in a program.

• Objects have properties, which hold data, and methods, which execute
functions.

• After an object is created, or instantiated, it can be used over and over
again.

• Allows for a lot of reuse and convenience that procedural programming
does not.

• If you’re not familiar, check out the OOP Examples project.

• https://www.drupal.org/project/oop_examples

https://www.drupal.org/project/oop_examples

Note
• All of these examples are from Drupal 8.

• While you can certainly use object-oriented code in Drupal 7, and many

people have, it’s now mandatory, so it’s best to get used to it.

Declaring Classes
• There should only be one class, interface, or trait per file.

• The file should be named after the class or interface.

• Here’s an example from the ctools contrib module →

EntityFormWizardBase.php

<?php

/**
 * @file
 * Contains \Drupal\ctools\Wizard\EntityFormWizardBase.
 */

namespace Drupal\ctools\Wizard;

use Drupal\Core\DependencyInjection\ClassResolverInterface;
use Drupal\Core\Entity\EntityManagerInterface;
use Drupal\Core\Form\FormBuilderInterface;
use Drupal\Core\Form\FormStateInterface;
use Drupal\Core\Routing\RouteMatchInterface;
use Drupal\ctools\Event\WizardEvent;
use Drupal\user\SharedTempStoreFactory;
use Symfony\Component\EventDispatcher\EventDispatcherInterface;

/**
 * The base class for all entity form wizards.
 */

abstract class EntityFormWizardBase extends FormWizardBase implements EntityFormWizardInterface {

Declaring Classes
• Class naming is important for autoloading. Autoloading allows for classes

to be loaded on demand, instead of a long list of require statements. From
drupal.org:

“In Drupal 8, classes will be autoloaded based on the PSR-4 namespacing
convention.

In core, the PSR-4 'tree' starts under core/lib/.

In modules, including contrib, custom and those in core, the PSR-4 'tree'
starts under modulename/src.”

http://www.php-fig.org/psr/psr-4/

https://www.drupal.org/node/608152#declaring

http://drupal.org
http://www.php-fig.org/psr/psr-4/
https://www.drupal.org/node/608152#declaring

Declaring Classes
• From the PSR-4 Autoloader documentation (which is quite brief and worth

looking over):

“This PSR describes a specification for autoloading classes from file paths...

This PSR also describes where to place files that will be autoloaded

according to the specification.”

• So all that’s going on here is that PSR-4 is telling you how to create your

file paths so that classes can be autoloaded.

http://www.php-fig.org/psr/psr-4/

A note on the file docblock
• The current Drupal standards state:

“The @file doc block MUST be present for all PHP files, with one exception:
files that contain a namespaced class/interface/trait, whose file name
is the class name with a .php extension, and whose file path is closely
related to the namespace (under PSR-4 or a similar standard), SHOULD
NOT have a @file documentation block.”

• This was adopted after most Drupal 8 code was written.
• This is why you are still seeing @file blocks in php files that don't require

them.
• I have not edited any of the snippets I am quoting here.
• Be aware that this is a new standard that you will probably be seeing

adopted in module code.

Namespaces
• Namespaces are a way of organizing codebases.

• First, let’s look at an example of a namespace from the Metatag contrib

module →

<?php

/**
 * @file
 * Contains Drupal\metatag\Command\GenerateGroupCommand.
 */

namespace Drupal\metatag\Command;

use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Input\InputOption;
use Symfony\Component\Console\Output\OutputInterface;
use Drupal\Console\Command\GeneratorCommand;
use Drupal\Console\Command\Shared\ContainerAwareCommandTrait;
use Drupal\Console\Command\Shared\ModuleTrait;
use Drupal\Console\Command\Shared\FormTrait;
use Drupal\Console\Command\Shared\ConfirmationTrait;
use Drupal\Console\Style\DrupalStyle;
use Drupal\metatag\Generator\MetatagGroupGenerator;

/**
 * Class GenerateGroupCommand.
 *
 * Generate a Metatag group plugin.
 *
 * @package Drupal\metatag
 */

class GenerateGroupCommand extends GeneratorCommand {

 use ContainerAwareCommandTrait;
 use ModuleTrait;
 use FormTrait;
 use ConfirmationTrait;

• Now look at the directory structure and
that’s what we’ll see:

• Remember, the PSR-4 directory tree starts
under src/, which is why it’s not included
in the namespace itself.

• When creating a Drupal module, you
should follow this directory structure -
<modulename>/src/<namespace>.

Namespaces

Namespaces
• In the previous example, there is a list of classes to be used in this file.

• Any class or interface with a backslash in it must be declared like this at the
top of the file.

• These are called "fully-qualified namespaces" and they now can be referred
to by just the last part of the namespace - the fully-qualified namespace may
no longer be used inside the code.

• In the class GenerateGroupCommand:

• The use statements there refer to the same namespaces used at the top of
the file, but here we don’t use the entire name (no backslash).

Namespaces & Collisions
• If you have two classes with the same name, that’s a collision.

• Fix it by aliasing the namespace.

• Use the next higher portion of the namespace to create the alias.

• Here’s an example from Drupal core:

namespace Drupal\Component\Bridge;

use Symfony\Component\DependencyInjection\ContainerAwareInterface;

use Symfony\Component\DependencyInjection\ContainerInterface;

use Zend\Feed\Reader\ExtensionManagerInterface as ReaderManagerInterface;

use Zend\Feed\Writer\ExtensionManagerInterface as WriterManagerInterface;

Global Classes
• An exception to use statements is if you are using a global class - in that case,

you don’t need to use anything.

• Here’s an example from the Devel contrib module →

/**

 * Formats a time.

 *

 * @param integer|float $time A raw time

 *

 * @return float The formatted time

 *

 * @throws \InvalidArgumentException When the raw time is not valid

 */

private function formatTime($time) {

 if (!is_numeric($time)) {

 throw new \InvalidArgumentException('The time must be a numerical value');

 }

 return round($time, 1);

}

Indenting and Whitespace
• Formatting basics don’t change in OOP, but there are some OOP-specific

conventions.

• There should be an empty line between the start of a class or interface

definition and a property or method definition.

• Here’s an example from the Token contrib module →

<?php

/**

 * @file

 * Contains \Drupal\token\TokenEntityMapperInterface.

 */

namespace Drupal\token;

interface TokenEntityMapperInterface {

 /**

 * Return an array of entity type to token type mappings.

 *

 * @return array

 * An array of mappings with entity type mapping to token type.

 */

 public function getEntityTypeMappings();

Indenting and Whitespace
• There should be an empty line between a property definition and a

method definition.

• Here’s another example from the Token contrib module →

/**

 * @var array

 */

protected $entityMappings;

public function __construct(EntityTypeManagerInterface

$entity_type_manager, ModuleHandlerInterface $module_handler) {

 $this->entityTypeManager = $entity_type_manager;

 $this->moduleHandler = $module_handler;

}

Indenting and Whitespace
• There should also be a blank line between the end of a method definition and the end of a

class definition - a blank line between the ending curly braces.

• Again from the Token module, here we can see that there is a blank line after the last

function:

/**

 * Resets metadata describing supported tokens.

 */

 public function resetInfo() {

 $this->tokenInfo = NULL;

 $this->cacheTagsInvalidator->invalidateTags([static::TOKEN_INFO_CACHE_TAG]);

 }

}

Naming Conventions
• When declaring a class or interface, use UpperCamel.

• When declaring a method or class property, use lowerCamel.

• Class names shouldn’t include "drupal" or “class.”

• Interfaces should end with "Interface."

• Test classes should end with “Test.”

More detailed conventions: https://www.drupal.org/node/608152#naming

• Here’s a good example from the Google Analytics contrib module →

https://www.drupal.org/node/608152#naming

/**

 * @file

 * Contains \Drupal\google_analytics\Tests\GoogleAnalyticsBasicTest.

 */

namespace Drupal\google_analytics\Tests;

use Drupal\Core\Session\AccountInterface;

use Drupal\simpletest\WebTestBase;

/**

 * Test basic functionality of Google Analytics module.

 *

 * @group Google Analytics

 */

class GoogleAnalyticsBasicTest extends WebTestBase {

Interfaces
• For flexibility reasons, it is strongly encouraged that you create interface

definitions and implement them in separate classes.

• If there is even a remote possibility of a class being swapped out for another

implementation at some point in the future, split the method definitions off

into a formal Interface.

• A class that is intended to be extended must always provide an Interface

that other classes can implement rather than forcing them to extend the base

class.

<?php

/**
 * @file
 * Contains \Drupal\ctools\ConstraintConditionInterface.
 */

namespace Drupal\ctools;

interface ConstraintConditionInterface {

 /**
 * Applies relevant constraints for this condition to the injected contexts.
 *
 * @param \Drupal\Core\Plugin\Context\ContextInterface[] $contexts
 *
 * @return NULL
 */

 public function applyConstraints(array $contexts = array());

 /**
 * Removes constraints for this condition from the injected contexts.
 *
 * @param \Drupal\Core\Plugin\Context\ContextInterface[] $contexts
 *
 * @return NULL
 */

 public function removeConstraints(array $contexts = array());

}

Visibility
• All methods and properties of classes must have their visibility declared.

• They can be public, protected, or private.

• Public properties are strongly discouraged.

• Here’s an example from the Metatag contrib module →

/**

 * Token handling service. Uses core token service or contributed Token.

 */

class MetatagToken {

 /**

 * Token service.

 *

 * @var \Drupal\Core\Utility\Token

 */

 protected $token;

 /**

 * Constructs a new MetatagToken object.

 *

 * @param \Drupal\Core\Utility\Token $token

 * Token service.

 */

 public function __construct(Token $token) {

 $this->token = $token;

 }

Type Hinting
• Type-hinting is optional, but recommended - can be a great debugging tool.

• If an object of the incorrect type is passed, an error will be thrown.

• If a method’s parameters expects a certain interface, specify it.

• Do not specify a class as a type, only an interface.

• This ensures that you are checking for a type, but keeps your code fluid

by not adhering rigidly to a class.

• Keep code reusable by checking only for the interface and not the class,

allowing the classes to differ.

/**

 * Extends the default PathItem implementation to generate aliases.

 */

class PathautoItem extends PathItem {

 /**

 * {@inheritdoc}

 */

 public static function propertyDefinitions(FieldStorageDefinitionInterface $field_definition)

{

 $properties = parent::propertyDefinitions($field_definition);

 $properties['pathauto'] = DataDefinition::create('integer')

 ->setLabel(t('Pathauto state'))

 ->setDescription(t('Whether an automated alias should be created or not.'))

 ->setComputed(TRUE)

 ->setClass('\Drupal\pathauto\PathautoState');

 return $properties;

 }

Chaining

// How many nodes are not represented in the node_access table?

 $num = db_query('SELECT COUNT(n.nid) AS num_nodes FROM {node} n LEFT JOIN {node_access} na

ON n.nid = na.nid WHERE na.nid IS NULL’)->fetchField();

• Chaining allows you to immediately call a function on a returned object.

• You’ve probably most often seen or used this with database objects.

• Here’s an example from the Devel Node Access contrib module:

• Without chaining, you’d have set the results of that query into an object like

$result, and then you could use the fetchField() function in another

statement.

Chaining
• Additionally, to allow for chaining whenever possible, methods that don’t

return a specific value should return $this.

• Especially in methods that set a state or property on an object, returning the

object itself is more useful than returning a boolean or NULL.

Constructors & Instantiation
• Drupal’s coding standards discourage directly creating classes.

• Instead, it is ideal to create a function to instantiate the object and return

it. Two reasons are given for this:

1. The function can be written to be re-used to return different objects with

the same interface as needed.

2. You cannot chain constructors in PHP, but you can chain the returned object

from a function, and chaining is very useful.

Constructors & Instantiation
• Here’s an example from the Metatag contrib module:

/**

 * {@inheritdoc}

 */

protected function createGenerator() {

 return new MetatagTagGenerator();

}

Wrapping Up OOP
If you need more resources, this Object Oriented Programming 101 post:

http://www.drupalwatchdog.com/volume-3/issue-1/object-oriented-

programming-101

and this Introduction to Drupal 8 Object-Oriented Concepts:

https://www.acquia.com/resources/webinars/introduction-drupal-8-object-

oriented-concepts#animated

 have been helpful to our team.

Twig in Drupal 8

The DocBlock
• Twig files should include a docblock like any other Drupal file.

• Sections such as @see, @ingroup, etc, still apply as they did before Twig, so use as

appropriate.

• A note on @ingroup themeable from Drupal.org:

Twig template docblocks should only include @ingroup themeable if the template is

providing the default themeable output. For themes overriding default output the

@ingroup themeable line should not be included.

Comments
• Comments are wrapped in the Twig comment indicator, {# … #}.

• Short and long comments use the same indicator.

• Long comments should be wrapped so that they do not exceed 80

characters.

• Comments that span several lines should have the indicators on separate

lines.

Comments
• Here's an example of a short comment from Drupal 8 core, the Field UI

module:

{# Add Ajax wrapper. #}

Comments
• Here's an example of a long comment from Drupal 8 core, the Book module:

{#

The given node is embedded to its absolute depth in a top
level section. For example, a child node with depth 2 in the
hierarchy is contained in (otherwise empty) div elements
corresponding to depth 0 and depth 1. This is intended to
support WYSIWYG output - e.g., level 3 sections always look like
level 3 sections, no matter their depth relative to the node
selected to be exported as printer-friendly HTML.

#}

Variables
• Variables should be referenced only by name in the docblock, with no prefix.

• For example, foo instead of $foo or {{ foo }}.

• The type should not be included, as this does not affect theming.

• Variables referenced inline in a docblock should be wrapped in single quotes.

• Here’s an example from the Token contrib module →

https://www.drupal.org/project/token

{#

/**

 * @file

 * Default theme implementation for the token tree link.

 *

 * Available variables:

 * - url: The URL to the token tree page.

 * - text: The text to be displayed in the link.

 * - attributes: Attributes for the anchor tag.

 * - link: The complete link.

 *

 * @see template_preprocess_token_tree_link()

 *

 * @ingroup themeable

 */

#}

{% if link -%}

 {{ link }}

{%- endif %}

Variables
• Variables referenced inline in a docblock should be wrapped in single quotes.

• Here's an example from Drupal 8 core, the Comment module→

 /*

...

 * - created: Formatted date and time for when the comment was created.

 * Preprocess functions can reformat it by calling format_date() with the

 * desired parameters on the 'comment.created' variable.

 * - changed: Formatted date and time for when the comment was last changed.

 * Preprocess functions can reformat it by calling format_date() with the

 * desired parameters on the 'comment.changed' variable.

...

*/

Expressions
• Twig makes it easy to check if a variable is available before using it.

• Just use if.

• Here's an example from Drupal 8 core:

 {% if label %}

 <h2{{ title_attributes }}>{{ label }}</h2>

 {% endif %}

Expressions
• Loops are also much simpler in Twig!

• You can easily use for loops in Twig.

• Here's an example from the Devel contrib module:

 {% for item in collector.links %}

 <div class="sf-toolbar-info-piece">

 <a href="{{ item.url }}" title="{{ item.description|

default(item.title) }}">{{ item.title }}

 </div>

{% endfor %}

Expressions
• Another simple expression that can be done in Twig is variable assignment.

• If a variable is needed only in the template, it can be declared directly, as you would

anywhere else. Like this:

{% myvariable = 'myvariable value' %}

HTML attributes
• HTML attributes in Drupal 8 are drillable.

• They can be printed all at once, or one at a time, using dot notation.

• If you do not print them all, they should all be included at the end, so that any other

attributes added by other modules will be included.

• If you're not familiar with HTML attributes in Drupal 8, here's some Drupal.org

documentation:

https://www.drupal.org/docs/8/theming-drupal-8/using-attributes-in-templates

• and the Drupal Twig documentation on HTML attributes:

 https://www.drupal.org/node/1823416#attributes

https://www.drupal.org/node/1823416#attributes

HTML attributes
• Here's an example from Drupal 8 core:

• In this code, the full attributes are printed for the <a> and tags.

 {% if link_path -%}

 <a{{ attributes }}>{{ name }}{{ extra }}

{%- else -%}

 <span{{ attributes }}>{{ name }}{{ extra }}

{%- endif -%}

HTML attributes
• You can also add or remove a class in Twig.

• Here's an example from the Views module:

Read more here: https://www.drupal.org/node/2315471

{%

 set classes = [

 dom_id ? 'js-view-dom-id-' ~ dom_id,

]

%}

<div{{ attributes.addClass(classes) }}>

https://www.drupal.org/node/2315471

Whitespace Control
• The {% spaceless %} tag removes whitespace between HTML tags.

• Wrap your code in this tag wherever you want to remove whitespace.

• Here’s an example from the Devel contrib module →

{% spaceless %}

 <div class="sf-toolbar-info-piece">

 {{ 'Status'|t }}

 <span class="sf-toolbar-status sf-toolbar-status-

{{ request_status_code_color }}">{{ collector.statuscode }} {{ collector.statustext }}

 </div>

 <div class="sf-toolbar-info-piece">

 {{ 'Controller'|t }}

 {{ request_handler }}

 </div>

 <div class="sf-toolbar-info-piece">

 {{ 'Route name'|t }}

 {{ request_route }}

 </div>

{% endspaceless %}

Whitespace Control
• The whitespace control character (-) removes whitespace at the tag level.

• Here’s an example from Drupal 8 core:

• This can also be used to remove the space from both sides or just one, if

the character is only on one side.

 <span{{ attributes }}>

 {%- for item in items -%}

 {{ item.content }}

 {%- endfor -%}

Caveat regarding newlines at the end of
files

• Drupal coding standards require that all files have a newline at the end of

files.

• If you have PHP codesniffer or any other tests set up for Drupal standards, it

will require this.

• However, in Twig, this may not be wanted in your template output.

• Until a better community-wide solution is reached, you can alter your tests if

you need them to pass, or add a twig template tag to the end of the file -

you can read this ongoing issue for more clarification:

https://www.drupal.org/node/2082845

https://www.drupal.org/node/2082845

Filters
• A filter in twig uses the pipe character, |.

• With the t() function, we talked about using the new |t filter to translate

text, but there are other filters that you can use as well.

Filters
• There are a variety of Twig filters and Drupal-specific filters.

• Here's an example of a Twig filter, join, from Drupal 8 core:

 <div class="sf-toolbar-info-piece">

 {{ 'Roles'|t }}

 {{ collector.roles|join(', ') }}

</div>

Syntax
• These standards are taken from the Twig Documentation:

twig.sensiolabs.org/doc/coding_standards.html

1. Put one (and only one) space after the start of a delimiter ({{, {%, and {#)

and before the end of a delimiter (}}, %}, and #}).

1.a) When using the whitespace control character, do not put any spaces

between it and the delimiter.

Syntax
2. Put one (and only one) space before and after the following operators:

• comparison operators (==, !=, <, >, >=, <=)

• math operators (+,-, /, *, %, //, **)

• logic operators (not, and, or)

• ~

• is

• in

• ternary operator (?:)

Syntax
3. Put one (and only one) space after the `:` sign in hashes and `,` in arrays and hashes.

4. Do not put any spaces after an opening parenthesis and before a closing parenthesis in

expressions.

5. Do not put any spaces before and after string delimiters.

6. Do not put any spaces before and after the following operators:

• |

• .

• ..

• []

Syntax
7. Do not put any spaces before and after the parenthesis used for filter and

function calls.

8. Do not put any spaces before and after the opening and the closing of arrays

and hashes.

9. Use lowercase and underscored variable names (not camel case).

10. Indent your code inside tags using two spaces, as throughout Drupal.

Wrapping Up

• Remember to keep coding standards handy.

• Refer to them often - they change!

• Check out the coding standards issue queue.

• Keep your code clean!

@ChromaticHQhttp://chromatichq.com

http://chromatichq.com

