
Subtitle

Add speaker name here

Title slide

http://vuln.rocks/crackdru

Security concepts and pitfalls
Peter Wolanin
Michael Hess

Cracking Drupal

Special thanks to Klaus Purer for creating the original talk and slides

Please open
http://vuln.rocks/crackdru

http://vuln.rocks/crackdru

Peter Wolanin

● Drupal Security Team member since 2008
● Core contributor to 5,6,7,8 and module maintainer, but often distracted
● Thinks using the plugin system for menu links was a brilliant stroke...

Michael Hess

● Security Team member since 2011, team lead.
● Teaches and runs Drupal sites at the University of Michigan
● Has been known to kill a Drupal site just to watch it die...

About The Presenters

2

http://vuln.rocks/crackdru

Agenda
● Review the top 10 types of web vulnerabilities
● Learn some best practices
● Answer questions
● Have fun along the way

3

http://vuln.rocks/crackdru

http://vuln.rocks/crackdru

When you think of security
what words come to mind?

4

http://vuln.rocks/crackdru

Confidentiality, integrity and availability, also known as the CIA
triad, is a model designed to guide policies for information
security within an organization. The model is also sometimes
referred to as the AIC triad (availability, integrity and
confidentiality) to avoid confusion with the Central Intelligence
Agency.

CIA Triad

5

http://vuln.rocks/crackdru

OWASP Top 10
● Open Web Application Security Project
● List of most critical security risks
● Assessment of attack vector, weakness and impact
● Updated every few years - 2017 is the

Latest version.

owasp.org/index.php/Category:OWASP_Top_Ten_Project
6

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

http://vuln.rocks/crackdru

What vulnerabilities have you
heard of?

7

http://vuln.rocks/crackdru

1. Injection
2. Broken Authentication
3. Sensitive Data Exposure
4. XML External Entities

(XXE)
5. Broken Access Control

The OWASP Top 10

8

6. Security Misconfiguration
7. Cross-Site Scripting (XSS)
8. Insecure Deserialization
9. Using Components with

Known Vulnerabilities
10. Insufficient

Logging&Monitoring

http://vuln.rocks/crackdru

1. Injection
Attacker's input is directly interpreted as code
SQL injection:
<?php

db_query("SELECT uid FROM {users} u WHERE

 u.name = '" . $_GET['user'] . "'");

Remote code execution:
<?php

eval($_POST['some_field']);

9

http://vuln.rocks/crackdru

Highest Impact!
● Injection attacks can completely compromise a site and

possibly also the underlying servers.
● SA-CORE-2014-005 SQL injection.
● SA-CORE-2018-002 & SA-CORE-2018-004 RCE via

form API.
● SA-CORE-2019-002 phar file execution.
● SA-CORE-2019-003 RCE via unserialization.

10

http://vuln.rocks/crackdru

SQL Injection question

11

http://vuln.rocks/crackdru

2. Broken Authentication
● Choose good passwords, use TFA for admins

(preferably all users)
○ https://drupal.org/project/password_policy
○ https://drupal.org/project/tfa

● Hash your passwords (Drupal core covers this)
● Protect your session IDs

Set up HTTPS. Do not send unencrypted session IDs.
All HTTPS should be used for all sites now (http/2).

12

https://drupal.org/project/password_policy
https://drupal.org/project/tfa

http://vuln.rocks/crackdru

3. Sensitive Data Exposure
● Encrypt sensitive data such as credit card numbers

in your database. Better: don’t store them if you don’t
have to (PCI, HIPPA, etc. compliance is hard).

● Know your risk level
● Weak keys or poor key management can still expose.
● Use HTTPS for all traffic
● User passwords are properly hash-salted by Drupal

7.x+ core, but weak passwords can still be cracked.
13

http://vuln.rocks/crackdru

4. XML External Entities
 (XXE)
May be used to expose private or system file content,
conduct a DoS attack, scan local networks, and more.

Affects SOAP, SAML, OPML feeds, or any other place
XML is parsed.

XML parsers may allow external entities by default -
beware any vendor libraries. Consider the source of any
XML you are parsing.

14

http://vuln.rocks/crackdru

5. Broken Access Control
Category: Access bypass vulnerabilities

Happens rarely for Drupal core, just use the user
permission and access APIs.

Example - a custom page callback that displays a node
without checking node access.

15

http://vuln.rocks/crackdru

Missing Access Control
Access bypass in hook_menu() (Drupal 7):
<?php

function mymodule_menu() {

 $items['admin/mymodule/settings'] = array(

 'title' => 'Admin configuration',

 'page callback' => 'drupal_get_form',

 'page arguments' => array('mymodule_admin_form'),

 'access callback' => TRUE,

);

 return $items;

16

http://vuln.rocks/crackdru

Missing Access Control
Access bypass in routing.yml (Drupal 8):

mymodule,admin_settings:

 path: '/admin/mymodule/settings'

 defaults:

 _form: '\Drupal\mymodule\Form\AdminSettingsForm'

 _title: 'Admin configuration'

 requirements:

 _access: 'TRUE'

17

http://vuln.rocks/crackdru

Using permissions
Protect your menu entries (routes):
<?php

function mymodule_menu() {

 $items['admin/mymodule/settings'] = array(

 'title' => 'Admin configuration',

 'page callback' => 'drupal_get_form',

 'page arguments' => array('mymodule_admin_form'),

 'access arguments' => array('administer mymodule'),

);

 return $items;

} 18

http://vuln.rocks/crackdru

Using permissions
Protect your routes:

mymodule,admin_settings:

 path: '/admin/mymodule/settings'

 defaults:

 _form: '\Drupal\mymodule\Form\AdminSettingsForm'

 _title: 'Admin configuration'

 requirements:

 _permission: 'administer mymodule'

} 19

http://vuln.rocks/crackdru

Correctly using node access
Limit the list of nodes with the node_access tag:
<?php

$records = db_select('node', 'n')

 ->fields('n')

 ->condition('type', 'expense_report')

 ->addTag('node_access')

 ->execute()

 ->fetchAll();

// ... load and render list of nodes somehow.

20

http://vuln.rocks/crackdru

6. Security misconfiguration
● Display of PHP error reporting

○ Disable at /admin/config/development/logging
● PHP filter module, disable at /admin/modules
● PHP files writeable by the web server
Write permissions for www-data pose a risk
-rw-r----- 1 deployer www-data index.php

drwxr-x--- 32 deployer www-data modules/

drwxrwx--- 7 www-data deployer sites/default/files/

Docs: https://drupal.org/security/secure-configuration
21

https://drupal.org/security/secure-configuration

http://vuln.rocks/crackdru

Permissions
● Be careful with restricted, site-owning permissions

(which roles do you trust?)
● Same for text formats (full HTML == XSS)
● Do not use the user 1 account in your daily work, it has

all permissions - best practice block the account.
● User 1 name should not be “admin” or any other easily

guessable name.

22

http://vuln.rocks/crackdru

Private files configuration
Move the private files directory outside of the docroot to
avoid direct downloads:
example.com

|+ conf

|- docroot

 |- index.php

 |- ... other Drupal files ...

|- private

 |- secret_picture.png

 |- ... other private files ...

|+
23

http://vuln.rocks/crackdru

PHP file execution
● Drupal uses the front controller pattern: almost

everything goes through index.php
● Disallow execution of PHP files in subfolders
● Prevents PHP execution in files directory
Apache example:
RewriteRule "^.+/.*\.php$" - [F]

Nginx example:
location ~* ^.+/.*\.php$ { deny all; }

24

http://vuln.rocks/crackdru

7. Cross-Site Scripting (XSS)
● Attackers can inject Javascript tags
● All user input must be sanitized before printing HTML
● (admin) user interaction is required - beware redirects
Reflected XSS example:

<?php

print 'You are on page number ' . $_GET['number'];

Penetration test: <script>alert('XSS');</script>
25

http://vuln.rocks/crackdru

Persistent XSS
Attacker's Javascript is be stored in the database.
Vulnerable code, because of the node title:

<?php

foreach ($nodes as $node) {

 $rows[] = array($node->nid, $node->title);

}

$render_array = array('#theme' => 'table','#rows' => $rows);

return $render_array;

26

http://vuln.rocks/crackdru

Preventing XSS
Escape the user input:

<?php

foreach ($nodes as $node) {

 $rows[] = array($node->nid, check_plain($node->title));

}

$render_array = array('#theme' => 'table','#rows' => $rows);

return $render_array;

Handling text securely: https://drupal.org/node/28984
27

https://drupal.org/node/28984

http://vuln.rocks/crackdru

XSS is Really Dangerous
● Some people wrongly assume that the common test for

XSS, an alert, is the actual attack. I.e. that it is at worst
an annoyance or defacement.

● Anything that you as administrator can do, XSS can do
also - change site settings, passwords, user roles, etc.

https://support.acquia.com/hc/en-us/articles/36000502869
4-Anything-you-can-do-XSS-can-do-better

28

https://support.acquia.com/hc/en-us/articles/360005028694-Anything-you-can-do-XSS-can-do-better
https://support.acquia.com/hc/en-us/articles/360005028694-Anything-you-can-do-XSS-can-do-better

http://vuln.rocks/crackdru

Filtering on output
When handling data, the golden rule is to store exactly
what the user typed. When a user edits a post they
created earlier, the form should contain the same things
as it did when they first submitted it. This means that
conversions are performed when content is output,
not when saved to the database.

29

http://vuln.rocks/crackdru 30

http://vuln.rocks/crackdru

Mitigating XSS
● What Drupal core does for us:

○ Sets HTTPOnly flag on session cookies to prevent JS
○ Password change requires current password
○ Text formats for different user roles
○ Autoescape in Drupal 8

● Content Security Policy: W3C standard, no inline JS
execution + JS domain whitelist

● We still need to rigorously escape user input.
31

http://vuln.rocks/crackdru

8. Insecure Deserialization
● Unserialization can be exploited in PHP via magic

methods like __destruct() to delete files or even
execute code.

● SA-CORE-2019-003 was a result of serialized strings
being parsed for some fields as part of API calls.

● Never use PHP serialize format for cookies, form data,
etc. - use a safe format like JSON.

32

http://vuln.rocks/crackdru

9. Using Components with
 Known Vulnerabilities

Widespread attack vectors, often automated
● Update all server software regularly
● Monitor security mailing lists, RSS feeds etc.
● Enable Drupal’s update status notifications and emails

● Security advisories at https://drupal.org/security
● Disable software components (like modules) that are

not used 33

https://drupal.org/security

http://vuln.rocks/crackdru

Enabling Notifications:
/admin/reports/updates/settings

34

me@example.com

http://vuln.rocks/crackdru

Drupal 7 will be EOL in November of 2021.

(Drupal 8 will also be EOL in November of 2021, but the
upgrade path is much easier)

Drupal 7 will be EOL

35

http://vuln.rocks/crackdru

10. Insufficient Logging &
 Monitoring
● What is happening to your Drupal sites right now?

If you were experiencing unusual requests or logins
would you know, or be able to find out later?

● If the Drupal or system logs were deleted do you have
a central copy?

● Recent high-profile hacks were potentially going on for
months before being detected.

36

http://vuln.rocks/crackdru

Use services that help with finding abnormalities.

Have centralized logging

Read your logs!

37

http://vuln.rocks/crackdru

Not top 10: Cross-Site
Request Forgery (CSRF)
function mymodule_menu() {

 $items['mymodule/pants/%/delete'] = array(

 'title' => 'Delete pants',

 'page callback' => 'mymodule_delete_pants',

 'page arguments' => array(2),

 'access arguments' => array('delete pants objects'),

); return $items;

}

function mymodule_delete_pants($pants_id) {

 db_delete('mymodule_pants')

 ->condition('pants_id', $pants_id)->execute();

}
38

http://vuln.rocks/crackdru

Example CSRF Exploit
● Attacker posts a comment somewhere:

● Chain of an attack:
○ Logged-in admin visits comment page
○ Browser fetches the image src and sends cookies along
○ Request is successfully authorized
○ Delete query is executed: pants 1337 is gone

drupalsun.com/klausi/2013/02/26/all-your-pants-are-danger-csrf-explained
39

http://drupalsun.com/klausi/2013/02/26/all-your-pants-are-danger-csrf-explained

http://vuln.rocks/crackdru

Protecting against CSRF
● Write operations need to be protected. Use either:

○ Confirmation forms (use Form API)
○ Security tokens in the URL (automated in Drupal 8)

http://example.com/mymodule/pants/1337/delete?token=tLBSLWTZVp
Rmp1cD_I4hCKd2vS-dJbv6xxTICKr3DHM

● POST requests: always use the Form API! JavaScript
can execute CSRF POST attacks, or you might submit
a form on an malicious website.

● Docs: https://drupal.org/node/178896
40

https://drupal.org/node/178896

http://vuln.rocks/crackdru

Do you see the pattern?
● Don’t trust any user provided data in the URL, the

request, or content in the database
● Attackers use browser features to perform actions

behind the user’s back (XSS, CSRF, open redirects)
● Attackers use known vulnerabilities and automated

tools to mass-hijack sites

41

http://vuln.rocks/crackdru

Check time!

42

http://vuln.rocks/crackdru

Be prepared for an attack
● Is your code in version control (git, svn, etc)?
● How often do you make full backups?
● Do you have separate login for each admin?
● If you are responsible for server (or VPS / VM) software do

you keep it up to date?
● Do you have an out-of-band access method (e.g ssh +

drush vs. web login)?
● Do you know where to find the Drupal watchdog log, web

server log, syslog etc?
43

http://vuln.rocks/crackdru

How to recover from an attack
● Determine what was compromised and when - after

making a copy of the site
● Restore from backup
● Update code (and server software)
● Change all passwords and keys
● Audit your code (custom modules first!)
● Save and then scan logs for traces of the attacker

(Drupal watchdog log, web server log, syslog etc.)
44

http://vuln.rocks/crackdru

Useful security modules
● Security Review: check your site for misconfiguration

https://drupal.org/project/security_review
● Paranoia: no PHP eval() from the web interface

https://drupal.org/project/paranoia
● Seckit: Content Security Policy, Origin checks against

CSRF, XSS https://drupal.org/project/seckit

45

https://drupal.org/project/security_review
https://drupal.org/project/paranoia
https://drupal.org/project/seckit

http://vuln.rocks/crackdru

Security improvements in
Drupal 8
● Twig auto-escape in templates
● Forbid PHP file execution in subfolders in .htaccess
● CSRF token support in the routing system
● Hashed session IDs in the DB
● HTTPS peer verification in HTTP client

(Guzzle)
● Permissions split up like “administer users”

46

https://dev.acquia.com/blog/drupal-8/10-ways-drupal-8-will-be-more-secure/27/08/2015/6621

https://dev.acquia.com/blog/drupal-8/10-ways-drupal-8-will-be-more-secure/27/08/2015/6621

http://vuln.rocks/crackdru

Security improvements in
Drupal 8
PHP module removed from core

47

Drupal Security Team

http://vuln.rocks/crackdru

Drupal Security Team
● https://www.drupal.org/security-team
● Coordinates security releases with maintainers
● Responsible disclosure: private issues at

https://security.drupal.org/
● Defines security policies, risk levels

49

https://www.drupal.org/security-team
https://security.drupal.org/

http://vuln.rocks/crackdru

● On Twitter: twitter.com/drupalsecurity
● Via email: on your drupal.org user edit page under

newsletters
● Via Web: drupal.org/security and

drupal.org/security/contrib
● In Drupal Slack, the #annoucments channel and the

#security-questions channel

Follow the Security Team

50

http://vuln.rocks/crackdru

Security

Team

General

processes

51

A quick summary

BEST PRACTICES

http://vuln.rocks/crackdru

Best practices can guide you as to where to start with or
invest in security.

Security is not a checkbox ✅, it has to be part of your
workflow (and mindset).

openconcept.ca/drupal-security-best-practices-practical-g
uide

Best Practices

53

https://openconcept.ca/drupal-security-best-practices-practical-guide
https://openconcept.ca/drupal-security-best-practices-practical-guide

BRUSHING YOUR TEETH IS A BEST PRACTICE

• For security, you can't check a list and be done.
• You must keep working at it. It is a process, not a one-time task.

http://vuln.rocks/crackdru

● Is your primary business hosting? If not, pay someone
to host your site.

● Shared hosting normally runs the webserver as the
owner of the file system (cpanel).

● Multiple sites on a server often use a common account
for all sites (www-data, nobody, etc).

Your hosting matters

55

http://vuln.rocks/crackdru

Multisite by default can be very insecure.

Unless you have a deep understanding of apache/nginx
and file permissions, multisite is insecure.

Unless you understand
multisite, don't use it.

56

http://vuln.rocks/crackdru

Security strategies
● Trust - who can do what
● Principle of least privilege - each site user should

have only the permissions necessary to do their job
● Defense in depth - multi layered protection to have

fallbacks
● Software updates - rule out obvious exploits in

Drupal, PHP, operating system, browser etc.

57

http://vuln.rocks/crackdru

Resources
Security handbook: https://drupal.org/writing-secure-code
Secure configuration: https://drupal.org/security/secure-configuration
XSS:https://support.acquia.com/hc/en-us/articles/360004992074-Intr
oduction-to-cross-site-scripting-XSS-
Security advisories: https://www.drupal.org/security
Site and book: http://crackingdrupal.com/

58

https://www.drupal.org/writing-secure-code
https://www.drupal.org/security/secure-configuration
https://support.acquia.com/hc/en-us/articles/360004992074-Introduction-to-cross-site-scripting-XSS-
https://support.acquia.com/hc/en-us/articles/360004992074-Introduction-to-cross-site-scripting-XSS-
https://www.drupal.org/security
http://crackingdrupal.com/

A new product
from the Drupal Association

and the Drupal Security Team

What is Drupal Steward

A Web Application Firewall protecting sites from
known vulnerabilities, before the vulnerability is
disclosed and the update is released.

For more information:
drupal.org/blog/regarding-critical-security-patc
hes-we-hear-your-pain

Peace of mind for Drupal Site Owners

https://www.drupal.org/blog/regarding-critical-security-patches-we-hear-your-pain
https://www.drupal.org/blog/regarding-critical-security-patches-we-hear-your-pain

Subtitle

Add speaker name here

Title slide

http://vuln.rocks/crackdru

THANK YOU! QUESTIONS?

Peter Wolanin
drupal.org/u/pwolanin slack: pwolanin

Michael Hess
drupal.org/u/mlhess slack: mlhess

Subtitle

Add speaker name here

Title slide

http://vuln.rocks/crackdru

Join us for contribution opportunities
Friday, April 12, 2019

9:00-18:00
Room: 602

Mentored
Core sprint

First time
sprinter workshop

General
sprint

#DrupalContributions

9:00-12:00
Room: 606

9:00-18:00
Room: 6A

Subtitle

Add speaker name here

Title slide

http://vuln.rocks/crackdru

What did you think?
Locate this session at the DrupalCon Seattle website:

https://events.drupal.org/node/22558
Take the Survey!

https://www.surveymonkey.com/r/DrupalConSeattle

