
1

September 28, 2016

Cracking Drupal
Security concepts and pitfalls

Peter Wolanin
Moshe Weitzman

Track: PHP
https://events.drupal.org/dublin2016/sessions/cracking-drupal

Special thanks to Klaus Purer for creating the original talk and slides
2

Security strategies
● Trust - who can do what
● Principle of least privilege - each site user should

have only the permissions necessary to do their job
● Defense in depth - multi layered protection to have

fallbacks
● Software updates - rule out obvious exploits in

Drupal, PHP, operating system, browser etc.

3

OWASP Top 10
● Open Web Application Security

Project
● List of most critical security risks
● Assessment of attack vector,

weakness and impact
● Updated every few years - 2017

https://www.owasp.org/index.php/Top_10_2013 4

https://www.owasp.org/index.php/Top_10_2013
https://www.owasp.org/index.php/Top_10_2013

1. Injection
Attacker's input is directly interpreted
SQL injection:
<?php

db_query("SELECT uid FROM {users} u WHERE

 u.name = '" . $_GET['user'] . "'");

Remote code execution:
<?php

eval($_POST['some_field']);

High impact! SA-CORE-2014-005 SQL injection
5

2. Authentication & sessions
● Choose good passwords, use TFA for admins

○ https://drupal.org/project/password_policy
○ https://drupal.org/project/tfa

● Hash your passwords (Drupal core covers this)
● Protect your session IDs

Set up HTTPS. Do not send unencrypted session IDs.
All HTTPS preferred. If you still need HTTP:
○ https://drupal.org/project/securelogin

6

https://drupal.org/project/password_policy
https://drupal.org/project/password_policy
https://drupal.org/project/tfa
https://drupal.org/project/tfa
https://drupal.org/project/securelogin
https://drupal.org/project/securelogin

3. Cross-Site Scripting (XSS)
● Attackers can inject Javascript tags
● All user input must be sanitized before printing to HTML
● (admin) user interaction is required - beware redirects
Reflected XSS example:

<?php

print 'You are on page number ' . $_GET['number'];

Penetration test: <script>alert('XSS');</script> 7

Persistent XSS
Attacker's Javascript is be stored in the database.
Vulnerable code, because of the node title:

<?php

foreach ($nodes as $node) {

 $rows[] = array($node->nid, $node->title);

}

$render_array = array('#theme' => 'table','#rows' => $rows);

return $render_array;

8

Preventing XSS
Escape the user input:

<?php

foreach ($nodes as $node) {

 $rows[] = array($node->nid, check_plain($node->title));

}

$render_array = array('#theme' => 'table','#rows' => $rows);

return $render_array;

Handling text securely: https://drupal.org/node/28984
9

https://drupal.org/node/28984

XSS is Really Dangerous
● Some people wrongly assume that the common test for

XSS, an alert, is the actual attack. I.e. that it is at worst
an annoyance or defacement.

● Anything that you as administrator can do, XSS can do
also - change site settings, passwords, user roles, etc.

https://docs.acquia.com/articles/anything-you-can-do-xss-
can-do-better

10

https://docs.acquia.com/articles/anything-you-can-do-xss-can-do-better
https://docs.acquia.com/articles/anything-you-can-do-xss-can-do-better
https://docs.acquia.com/articles/anything-you-can-do-xss-can-do-better

Filtering on output
When handling data, the golden rule is to store exactly
what the user typed. When a user edits a post they
created earlier, the form should contain the same things
as it did when they first submitted it. This means that
conversions are performed when content is output,
not when saved to the database.

11

12https://docs.acquia.com/articles/handling-strings-safely-drupal

https://docs.acquia.com/articles/handling-strings-safely-drupal
https://docs.acquia.com/articles/handling-strings-safely-drupal

Mitigating XSS
● What Drupal core does for us:

○ Drupal sets the HTTPOnly flag on session cookies to
prevent cookie stealing in JS

○ User edit form: password change requires current
password (since Drupal 7)

○ Text formats for different user roles
● Content Security Policy: W3C standard, no inline JS

execution + JS domain whitelist
● We still need to rigorously escape user input.

13

4. Insecure Direct Object
 References

Category: Access bypass vulnerabilities

Happens rarely for Drupal, just use the user permission
and access APIs.

Example - a custom page callback that displays a node
without checking node access.

14

5. Security misconfiguration
● Display of PHP error reporting

○ Disable at /admin/config/development/logging
● PHP filter module, disable at /admin/modules
● PHP files writeable by the web server
Remove write permissions for www-data
-rw-r----- 1 deployer www-data index.php

drwxr-x--- 32 deployer www-data modules/

drwxrwx--- 7 www-data deployer sites/default/files/

Docs: https://drupal.org/security/secure-configuration 15

https://drupal.org/security/secure-configuration

Permissions
● Be careful with restricted, site-owning permissions

(which roles do you trust?)
● Same for text formats (full HTML == XSS)
● Do not use the user 1 account in your daily work, it has

all permissions - best practice block the account.
● User 1 name should not be “admin” or any other easily

guessable name.

16

Private files configuration
Move the private files directory outside of the docroot to
avoid direct downloads:
example.com

|+ conf

|- docroot

 |- index.php

 |- ... other Drupal files ...

|- private

 |- secret_picture.png

 |- ... other private files ...

|+
17

PHP file execution
● Drupal uses the front controller pattern: almost

everything goes through index.php
● Disallow execution of PHP files in subfolders
● Prevents PHP execution in files directory
Apache example:
RewriteRule "^.+/.*\.php$" - [F]

Nginx example:
location ~* ^.+/.*\.php$ { deny all; }

Already present in .htaccess in Drupal 8 18

6. Sensitive Data Exposure
● Encrypt sensitive data such as credit card numbers

in your database. Even better: don’t store them if you
don’t have to (PCI, medical records, etc. compliance is
hard).

● Again, use HTTPS for authenticated sessions (or
better - all site traffic) to not transmit data in plain text.

● User passwords are properly hash-salted by Drupal
7.x+ core (use phpass for 6.x).

19

7. Missing Function Level
 Access Control

Access bypass in hook_menu():
<?php

function mymodule_menu() {

 $items['admin/mymodule/settings'] = array(

 'title' => 'Admin configuration',

 'page callback' => 'drupal_get_form',

 'page arguments' => array('mymodule_admin_form'),

 'access callback' => TRUE,

);

 return $items;

} 20

Using permissions
Protect your menu entries (routes):
<?php

function mymodule_menu() {

 $items['admin/mymodule/settings'] = array(

 'title' => 'Admin configuration',

 'page callback' => 'drupal_get_form',

 'page arguments' => array('mymodule_admin_form'),

 'access arguments' => array('administer mymodule'),

);

 return $items;

} 21

Correctly using node access
Limit the list of nodes with the node_access tag:
<?php

$records = db_select('node', 'n')

 ->fields('n')

 ->condition('type', 'expense_report')

 ->addTag('node_access')

 ->execute()

 ->fetchAll();

// ... load and render list of nodes somehow.

for 6.x: db_rewrite_sql() 22

8. Cross-Site Request Forgery
 (CSRF)

function mymodule_menu() {

 $items['mymodule/pants/%/delete'] = array(

 'title' => 'Delete pants',

 'page callback' => 'mymodule_delete_pants',

 'page arguments' => array(2),

 'access arguments' => array('delete pants objects'),

); return $items;

}

function mymodule_delete_pants($pants_id) {

 db_delete('mymodule_pants')

 ->condition('pants_id', $pants_id)->execute();

}
23

Example CSRF Exploit
● Attacker posts a comment somewhere:

● Chain of an attack:
○ Logged-in admin visits comment page
○ Browser fetches the image src and sends cookies along
○ Request is successfully authorized
○ Delete query is executed: pants 1337 is gone

http://epiqo.com/en/all-your-pants-are-danger-csrf-explained
24

http://epiqo.com/en/all-your-pants-are-danger-csrf-explained
http://epiqo.com/en/all-your-pants-are-danger-csrf-explained

Protecting against CSRF
● Write operations need to be protected. Use either:

○ Confirmation forms (use Form API)
○ Security tokens in the URL

http://example.com/mymodule/pants/1337/delete?token=tLBSLWTZVp
Rmp1cD_I4hCKd2vS-dJbv6xxTICKr3DHM

● POST requests: always use the Form API! JavaScript
can execute CSRF POST attacks, or you might submit
a form on an malicious website.

● Docs: https://drupal.org/node/178896
25

https://drupal.org/node/178896

9. Using Components with
 Known Vulnerabilities

Widespread attack vectors, often automated
● Update all server software regularly
● Monitor security mailing lists, RSS feeds etc.
● Enable Drupal’s update status notifications and emails

● Security advisories at https://drupal.org/security
● Disable software components (like modules) that are

not used 26

https://drupal.org/security

Enabling Notifications:
/admin/reports/updates/settings

27

me@example.com

10. Unvalidated Redirects
and Forwards

Vulnerability:
<?php

drupal_goto($_GET['target']);

Exploit example that redirects to evil.com:
http://example.com/cart?target=http%3A%2F%2Fevil.com

Perfect vector for phishing attacks. Correct:
<?php

if (!url_is_external($_GET['target'])) {

 drupal_goto($_GET['target']);

}
28

Do you see the pattern?
● Don’t trust any user provided data in the URL, the

request, or content in the database
● Attackers use browser features to perform actions

behind the user’s back (XSS, CSRF, open redirects)
● Attackers use known vulnerabilities and automated

tools to mass-hijack sites

29

Be prepared for an attack
● Is your code in version control (git, svn, etc)?
● How often do you make full backups?
● Do you have separate login for each admin?
● If you are responsible for server (VPS) software do you

keep it up to date?
● Do you have an out-of-band access method (e.g ssh +

drush vs. web login)?
● Do you know where to find the Drupal watchdog log,

web server log, syslog etc? 30

How to recover from an attack
● Determine what was compromised and when - after

making a copy of the site
● Restore from backup
● Update code (and server software)
● Change all passwords and keys
● Audit your code (custom modules first!)
● Save and then scan logs for traces of the attacker

(Drupal watchdog log, web server log, syslog etc.)
31

Useful security modules
● Security Review: check your site for misconfiguration

https://drupal.org/project/security_review
● Paranoia: no PHP eval() from the web interface

https://drupal.org/project/paranoia
● Seckit: Content Security Policy, Origin checks against

CSRF, XSS https://drupal.org/project/seckit

32

https://drupal.org/project/security_review
https://drupal.org/project/security_review
https://drupal.org/project/paranoia
https://drupal.org/project/paranoia
https://drupal.org/project/seckit

Security improvements in
Drupal 8
● Twig auto-escape in templates
● Forbid PHP execution in subfolders in

.htaccess
● CSRF token support in the routing system
● Hashed session IDs in the DB
● HTTPS peer verification in HTTP client

(Guzzle)
● Permissions split up like “administer users”

33https://dev.acquia.com/blog/drupal-8/10-ways-drupal-8-will-be-more-secure/27/08/2015/6621

https://dev.acquia.com/blog/drupal-8/10-ways-drupal-8-will-be-more-secure/27/08/2015/6621
https://dev.acquia.com/blog/drupal-8/10-ways-drupal-8-will-be-more-secure/27/08/2015/6621

Security improvements in
Drupal 8
PHP module removed from core

34

Drupal Security Team
● https://www.drupal.org/security-team
● Coordinates security releases with maintainers
● Responsible disclosure: private issues at

https://security.drupal.org/
● Defines security policies, risk levels

35

https://www.drupal.org/security-team
https://www.drupal.org/security-team
https://security.drupal.org/
https://security.drupal.org/

Resources
Security handbook: https://drupal.org/writing-secure-code
Secure configuration: https://drupal.org/security/secure-configuration
XSS:
https://docs.acquia.com/articles/introduction-cross-site-scripting-xss-
and-drupal
Security advisories: https://www.drupal.org/security
Site and book: http://crackingdrupal.com/

36

https://www.drupal.org/writing-secure-code
https://www.drupal.org/security/secure-configuration
https://docs.acquia.com/articles/introduction-cross-site-scripting-xss-and-drupal
https://docs.acquia.com/articles/introduction-cross-site-scripting-xss-and-drupal
https://docs.acquia.com/articles/introduction-cross-site-scripting-xss-and-drupal
https://www.drupal.org/security
http://crackingdrupal.com/

THANK YOU! QUESTIONS?

Peter Wolanin
drupal.org/user/49851 IRC: pwolanin

Moshe Weitzman
drupal.org/user/23 IRC: moshe

37

JOIN US FOR
CONTRIBUTION SPRINTS

FRIDAY, SEPTEMBER 30

First Time Sprinter Workshop - 9:00-12:00 - Wicklow 2A
Mentored Core Sprint - 9:00-18:00 - Wicklow Hall 2B
General Sprints - 9:00 - 18:00 - Wicklow Hall 2A

38

Evaluate This Session

THANK YOU!

events.drupal.org/node/13773

WHAT DID YOU THINK?

39

