
Supercharge your next web app
with Electron!

GET /user/techninja

James Todd
● Drupal Dev for 10+ years from Nor Cal

● Full time developer at Four Kitchens

● Maker, promoter of STEAM for kids

● Co-Author for Arduino Book series

● Maintainer of 2 OSS Electron apps for robotic
control (check out a demo our booth!)

Hold questions until the end
Thank you :)

Quick Term Reference

● JavaScript: Programming language for web
browsers

● Node.js: JavaScript for servers
● NPM: The node package manager
● API: Interface to let programs to something
● ReST/ful: Standard for APIs over the web

Quick Term Reference

● DOM: Object model for web page elements
● React: Web framework for state & UI

management
● Express: node.js “web server” and ReST

router
● Headless: Running just a backend without a

frontend

What is Electron?

Electron is yours!

= +

Electron is three things...

=

Electron's architecture makes it better

Main Process Renderer Processes

Creating with Electron means:

● Single codebase, cross platform native

● Use standard HTML 5 markup

● Use Bootstrap, Angular, React, jQuery and more

● Incredibly powerful debugging w/Chrome dev tools

● Only one browser version to target!

● No need to worry about download times for local files

Who uses Electron?

Atom Editor
● Infinitely hackable

● > 5k community packages
to extend functionality

● > 1mm monthly users

● Dogfooding ensures purity
and strong releases

WordPress Desktop
● Clean, uncluttered interface

● Built by small team in
about 2 months

● Direct API access to
remotes sites, or offline
storage synced.

Visual Studio Code

● MS Open Source

● Different take on code
editing

● Live code
execution/debugging
for node/php & more

electron.atom.io/apps

Quando a Roma...

???

“People are excited about the
Desktop again…” -Paul Betts

Electron might NOT be for your app if...
...you answer NO to any of the following:

● Can your app run reliably and be useful while offline?

● Can your team meet user needs for application updates
and OS specific install support?

● Does extending to desktop meet few additional needs
and use cases beyond native notifications and interfaces?

Electron might be RIGHT for your app if...
● Do you need low level functionality not handled by

existing APIs?

● Do you need to port a node or other server side app
for client side use?

● Do you need extra async processing power beyond
webworkers ?

Just give it a try!

“Ship Stuff Every Day”
 — Plato

(or was it Snoop Dogg?)

CNCServer running on a
Raspberry PI driving the
WaterColorBot via API from
native iPad app at the
White House Science Fair 2013

<webview>

https://electron.atom.io/docs/api/webview-tag/

<webview>

Mode links

Mode Webview
“iframe”

Main Window

<webview>

Mode links

Mode Webview
“iframe”

Main Window

<webview>

Mode links

Mode Webview
“iframe”

Main Window

<webview>

Each organization
in Slack runs in
its own webview
process.

https://slack.engineering/reducing-slacks-memory-footprint-4480fec7e8eb

https://github.com/PancakeBot/PancakePainter

https://github.com/PancakeBot/PancakePainter

https://redd.it/5ld12n

OS Specific Binary
Raster to autotrace >

< autotrace to SVG

Making Electron
Work for you

Development Prerequisites:

● Relatively new OS (minimum)
○ Win 7, OS X 10.9, Ubuntu 12

● Terminal/Command line access
● Node.js installed (nodejs.org)
● Working knowledge of how web

browsers display HTML

Let’s build a simple Electron App

Electron Project
Minimums:

package.json

main.js

index.html

package.json

{
 "name": "my-electron-project",
 "version": "1.0.0",
 "description": "A minimal Electron application",
 "main": "main.js",
 "scripts": {
 "start": "electron ."
 },
 "devDependencies": {
 "electron": "~1.6.2"
 }
}

Main.js (Main Process)
const electron = require('electron')
const app = electron.app
const BrowserWindow = electron.BrowserWindow

const path = require('path')
const url = require('url')

function createWindow () {
 mainWindow = new BrowserWindow({width: 800, height: 600})

 mainWindow.loadURL(url.format({
 pathname: path.join(__dirname, 'index.html'),
 protocol: 'file:',
 slashes: true
 }))

app.on('ready', createWindow)

Index.html (Renderer Process)

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Hello World!</title>
 </head>
 <body>
 <h1>Hello World!</h1>
 <!-- All of the Node.js APIs are available in this renderer process. -->
 We are using Node.js <script>document.write(process.versions.node)</script>,
 Chromium <script>document.write(process.versions.chrome)</script>,
 and Electron <script>document.write(process.versions.electron)</script>.
 </body>

 <script>
 // You can also require other files to run in this process
 require('./renderer.js')
 </script>
</html>

`npm install`, `npm start`

It works! (hopefully)

...or just use electron-quick-start

`git clone https://github.com/electron/electron-quick-start`

Electron can use...
● Express server
● Native

runtimes/compiled
code

● Low level hardware
connections

Electron Libraries:
● Automatic babel/sass

compilation
● Streamlined user

configuration storage
● etc…..

Native APIs

● File Open/Save
● Native customizable

dialogs for each OS
● Menus, keyboard

shortcuts, clipboard
● Desktop capture

● Environment variables
● IPC communication

between processes
● Frameless windows
● Dynamic tray, dock or

application icons
● Tons more!

Native API demo app

github.com/electron/electron-api-demos

Integration
Drupal 8, Waterwheel, React, and Electron

Drupal 8 inside electron

github.com/fourkitchens/waterwheel-training

● API First Drupal 8 with React.js and Waterwheel
● Future of the CMS: Decoupled, multichannel, and content-as-a-service
● A look into a possible Future for all of us: React, GraphQL and Drupal
● Ain’t No Body: Not Your Mama’s Headless Drupal
● Decoupled Drupal and Angular 2
● EmberJS: A Fitting Face for a D8 Backend
● Decoupled from the Inside Out
● Drupal, Alexa, and Big Mouth Billy Bass Walk into a Bar
● API-First Initiative
● Masters of the Universe: Live-coding a React Application using Drupal Services

All the Drupal 8 API/Headless sessions
or trainings at DrupalCon Baltimore:

https://events.drupal.org/baltimore2017/training/api-first-drupal-8-reactjs-and-waterwheel
https://events.drupal.org/baltimore2017/training/api-first-drupal-8-reactjs-and-waterwheel
https://events.drupal.org/baltimore2017/sessions/future-cms-decoupled-multichannel-and-content-service
https://events.drupal.org/baltimore2017/sessions/future-cms-decoupled-multichannel-and-content-service
https://events.drupal.org/baltimore2017/sessions/look-possible-future-all-us-react-graphql-and-drupal
https://events.drupal.org/baltimore2017/sessions/look-possible-future-all-us-react-graphql-and-drupal
https://events.drupal.org/baltimore2017/sessions/ain%E2%80%99t-no-body-not-your-mama%E2%80%99s-headless-drupal
https://events.drupal.org/baltimore2017/sessions/ain%E2%80%99t-no-body-not-your-mama%E2%80%99s-headless-drupal
https://events.drupal.org/baltimore2017/sessions/decoupled-drupal-and-angular-2
https://events.drupal.org/baltimore2017/sessions/decoupled-drupal-and-angular-2
https://events.drupal.org/baltimore2017/sessions/emberjs
https://events.drupal.org/baltimore2017/sessions/emberjs
https://events.drupal.org/baltimore2017/sessions/decoupled-inside-out
https://events.drupal.org/baltimore2017/sessions/decoupled-inside-out
https://events.drupal.org/baltimore2017/sessions/drupal-alexa-and-big-mouth-billy-bass-walk-bar
https://events.drupal.org/baltimore2017/sessions/drupal-alexa-and-big-mouth-billy-bass-walk-bar
https://events.drupal.org/baltimore2017/sessions/api-first-initiative
https://events.drupal.org/baltimore2017/sessions/api-first-initiative
https://events.drupal.org/baltimore2017/sessions/masters-universe-live-coding-react-application-using-drupal-services
https://events.drupal.org/baltimore2017/sessions/masters-universe-live-coding-react-application-using-drupal-services

Main.js (excerpt)

…

function createWindow () {
 mainWindow = new BrowserWindow({width: 740, height: 500})

 mainWindow.loadURL(url.format({
 pathname: path.join(__dirname, 'build', 'index.html'),
 protocol: 'file:',
 slashes: true
 }))

app.on('ready', createWindow)

app.on('window-all-closed', function () {
 app.quit()
}

{
 "name": "todomvc",
 "version": "0.0.1",
 "main": "main.js",
 "scripts": {
 "start": "electron .",
 "build": "react-scripts build"
 },
 "devDependencies": {
 "electron": "~1.6.2",
 "enzyme": "^2.4.1",
 "react-scripts": "^0.9.0",
 ...

package.json (excerpt)

`npm install`

`npm run build`, `npm start`

To do React app in Electron!

API, Devtools for debugging

It’s really that easy

Squirrel!

Installation packaging

● Integrating an app should be easy

● Packaging can be automated, and
supports delta updates

● Distributing should be straightforward
with channels

● Installing is Wizard-Free™ with no UAC
dialogs or reboot

● Updating is done in the background

Installation building

electron-packager

electron-packager

electron-packager

electron-installer
windows

appdmg

electron-installer
[debian/redhat]

appname.exe

appname.dmg

appname.deb/
appname.rpm

Updates

autoUpdater & update servers
● Nuts: https://github.com/GitbookIO/nuts

○ Powered by GitHub project releases for files & data
○ Quickly deployable to Heroku/docker/your own server as stateless service

with minor configuration via environment variables
○ Supports private repositories for closed source releases
○ Supports Squirrel.Windows & Squirrel.Mac

● “Electron Release Server”:
https://github.com/ArekSredzki/electron-release-server
○ Full featured, provides hosted Angular powered UI interface for

managing and displaying releases
○ Docker deploy support, or run it on your own server
○ Supports Squirrel.Windows & Squirrel.Mac

https://github.com/GitbookIO/nuts
https://github.com/ArekSredzki/electron-release-server
https://github.com/ArekSredzki/electron-release-server

Security and sandboxes

Don’t let Bobby ruin your week

Electron Security basics

● Always sanitize input and output
● Don’t allow giant or executable file uploads
● Only ever load local source files into windows
● Otherwise, disable node integration and use

caution

Crash reporting

const {crashReporter} = require('electron')

crashReporter.start({

 productName: 'YourName',

 companyName: 'YourCompany',

 submitURL: 'https://your-domain.com/submit',

 uploadToServer: true

})

Mini Breakpad
Server

github.com/electron/mini-breakpad-server

That’s pretty much it!

● Electron is very active and still somewhat new.
● It’s not always the right solution
● When in doubt, just give it a try.
● Real companies ship with Electron every day

Electron Question Time!

Thank you!

Join Us for Contribution Sprints

First-Time Sprinter
Workshop

9:00am-12:00pm
Room: 307-308

#drupalsprints

Friday, April 28, 2017

Mentored Core Sprint
9:00am-12:00pm

Room:301-303

General Sprints
9:00am-6:00pm
Room:309-310

THANK YOU!

WHAT DID
YOU THINK?
Supercharge Your Next Web App with electron!
https://events.drupal.org/baltimore2017/sessions/superch
arge-your-next-web-app-electron

Take the survey!
https://www.surveymonkey.com/r/drupalconbaltimore

https://www.surveymonkey.com/r/drupalconbaltimore
https://www.surveymonkey.com/r/drupalconbaltimore

