
Decoupled site building
Drupal's next challenge

Preston So • 28 Sep 2017 • DrupalCon Vienna 2017

Herzlich Willkommen!

Preston So has been a web developer and designer since 2001, a
creative professional since 2004, and a Drupal developer since 2007.
As Director of Research and Innovation at Acquia, Preston leads new
open-source and research initiatives and helms Acquia Labs, the
innovation lab featured in international press.

Previously, Preston contributed to the Spark initiative in the Drupal
project, co-founded the Southern Colorado Drupal User Group (est.
2008), and operated an award-winning freelance web and print
design studio. Preston has presented keynotes at conferences on
three continents in multiple languages.

preston.so@acquia.com • @prestonso • #decoupledsitebuilding

What we'll cover

● The widening gap between developer and marketer
● Editing everywhere and editing everything
● Progressive decoupling and the "black box"
● Fully decoupled front ends: Administrative and

public-facing
● The mythical "Edit" button: The case of Prismic
● Decoupled layout: The case of RESTful Panels
● Epilogue: Decoupled content strategy
● Open discussion

The widening gap between
developer and marketer

1

Think about how we're using Drupal today.

Drupal's value proposition

Drupal has long prided itself on its unique place at the
fulcrum of:

● The developer, who benefits from a flexible
developer experience and high extensibility.

● The marketer, who benefits from contextualized
administration tools and editorial access.

● The user, who benefits from whatever user
experiences are built by both other personas.

Is the CMS as we know it dead?
Yes.

How can we keep up with
a widening wilderness of untapped
digital experiences?

How can we keep up with
CMSes that don't even exist yet?

What is the ideal CMS?

It requires a whole new kind of thinking for the
omnichannel:

● The developer retains immense flexibility.

● The marketer can use a contextualized editorial
experience that is immediately accessible.

● Most critically, the user can experience content
on any possible channel.

Decoupled Drupal

● Decoupled Drupal is the underlying approach
that allows for communication with other
systems: set-top boxes, augmented reality, etc.

● Decoupled Drupal enables anyone else to "speak
Drupal."

● But only having robust APIs is not enough;
consider the cautionary tale of headless CMSes.

Decoupled Drupal

Drupal

Drupal front end

PHP

Data

Templates

HTML

Drupal

Decoupled application

PHP

Data

Templates

HTML

Other
language

JSON
REST API

Editorial experience

● Often, what developers want is in complete
opposition to what marketers want

● Example: JavaScript framework agnosticism vs.
contextualized front-end tools

● Cases to consider: Calypso and React, Laravel
and Vue, Prismic

Editorial experience

● How do you edit digital signage?

● How do you edit content driven by augmented
and virtual reality?

● How do you edit conversational content?

Drupal's new incongruity

Drupal's value proposition is becoming incongruous
between the three personas: the user, the marketer,
and the developer.

Is this irreconcilable?

Developer experience

Marketer experience

Drupal's new incongruity

Websites Responsive

Digital signage

Wearables

Set-top boxes

Augmented reality

Conversational

Mobile

Drupal's new incongruity

The
developer–
user axis

The
marketer–
user axis

B
et

te
r f

or
 d

ev
el

op
er

s

Better for marketers

Bette
r f

or u
sers

"Better for users" increasingly means "better on more devices."

Drupal's new incongruity

The
developer–
user axis

The
marketer–u
ser axis

B
et

te
r f

or
 d

ev
el

op
er

s

Better for marketers

Bette
r f

or u
sers

A better outcome for users relies more on custom work by developers.

Editing everywhere
and editing everything

2

Edit everywhere

● We already tried it with
responsive editing

● Most people will resort to
desktop for more complex
operations

● The full breadth of
functionality isn't available

● User experience
deteriorates considerably
on certain devices

The spectrum of edit everywhere

Fewer channels More channels

Better usability on fewer
devices

Fewer technology
stacks to maintain

Fewer devices that need
unique interface design

Worse usability on more
devices

More technology stacks
to maintain

More devices that need
unique interface design

Edit everything

● Edit every channel on "Drupal" through outside-in
interfaces and API-first Drupal

● Consistent and seamless user experience across
all channel editorial experiences

● Drupal for other experiences should be
indistinguishable from Drupal for web
experiences

Outside-in interfaces

Outside-in interfaces

The spectrum of edit everything

Fewer channels More channels

Better usability on fewer
devices

Fewer emulation
techniques to maintain

Less need for developer
assistance for editorial
preview

Worse usability on more
devices

More emulation
techniques to maintain

More need for developer
assistance for editorial

preview

No silver bullet

● Editing everywhere requires us to build editorial
interfaces for every device, but it will eventually
reach an extreme where interfaces are unusable.

● Editing everything requires us to include
emulators or provide high-fidelity preview via
infrastructure, but it will eventually reach an
extreme where infrastructural demand becomes
too high.

As the number of channels grows,
Drupal is stuck between a rock and a
hard place

Drupal currently has examples
where this tension is clearly evident

Contextual administration
involves in-context editorial and site
building actions within the front end

Contextualized administration

● In-place editing

● Contextual links

● Toolbar

● In-context layout management

Progressive decoupling
and the "black box"

3

Success!
Here are
others that
might interest
you:

Lorem ipsum
dolor sit
amet,
consectetuer
adipiscing.

Subscribe to our newsletter

E-mail address

Submit

Lorem ipsum
dolor sit
amet,
consectetuer
adipiscing.

Subscribe

E-mail

Submit

Lorem ipsum
dolor sit
amet,
consectetuer
adipiscing.

Drupal

Progressively decoupled Drupal

Client

Server

Synchronous

Asynchronous

one
bootstrap

Drupal front end

JavaScript
framework

HTTP
request

The spectrum of progressive decoupling approaches

Extent of page controlled by JavaScriptLess More

Drupal- (PHP-) controlled JavaScript-controlled

Decoupled blocks
Interactivity scoped
to blocks; Drupal
controls layout

Header

Footer

Decoupled main area
Main content handed
over to JS; Drupal
provides static routes
and initial output

Page body

Decoupled page body
Entire page body
handed over to JS;
Drupal provides initial
state on page load

Block

B
lock

Block

Main content

Progressive decoupling "black boxes"

Extent of page controlled by JavaScriptLess More

Drupal- (PHP-) controlled Drupal "black boxes"

Decoupled blocks
Interactivity scoped
to blocks; Drupal
controls layout

Header

Footer

Decoupled main area
Main content handed
over to JS; Drupal
provides static routes
and initial output

Page body

Decoupled page body
Entire page body
handed over to JS;
Drupal provides initial
state on page load

Block

B
lock

Block

Main content

Decoupled Blocks

● Decoupled Blocks forges an equilibrium between
the site builders manipulating layouts and
front-end developers manipulating page
behavior — in other words, both must
compromise on something.

● It's a framework-agnostic module allowing
JavaScript components to render into blocks.

● drupal.org/project/pdb

Decoupled Blocks

Site builder moves
block from one area
to another

Decoupled
Block

Drupal Block

This enables simple
visual assembly for
editors and site
builders

D
ecoupled B

lock

Drupal Block

But these JavaScript
components are often
"black boxes" and
frustrating for editors

N
o in-p

lace ed
it

Drupal Block

Also no silver bullet

● Development practices differ wildly between
Drupal and JavaScript frameworks, which
presume that front-end developers wield full
control over layout and structure.

● The current lack of harmony between Drupal’s
own systems and APIs and those found
JavaScript frameworks compounds the gap
between the two.

Areas of concern

● Templating

● Routing

● Rendering

Drupal routes as a superset of JavaScript routes

1. User navigates to
example.com/

Drupal
server-side

JavaScript
client-side

Drupal renders the route
and flushes to browser

Client-side JavaScript
binds and is ready for
navigation

2a. User navigates to
example.com/about

Drupal renders the route
and flushes to browser

Client-side JavaScript
binds and is ready for
navigation

2b. User clicks on
example.com/about
link

Client-side JavaScript
rerenders content area

Issue: Template duplication

Angular 1: User navigates
to example.com/

Drupal renders the route
according to Twig
template

Client-side Angular binds
according to ng-attributes
hardcoded in Twig
template

Angular 1: User clicks on
example.com/about link

Client-side Angular
rerenders according to
Angular/Twig hybrid

React: User navigates to
example.com/

Drupal renders the route
according to Twig
template

Client-side React binds
according to JSX
hardcoded into Twig
template

React: User clicks on
example.com/about link

Client-side React
rerenders according to
JSX housed in React
component

Progressive decoupling
comes with expensive tradeoffs

Progressive decoupling
may be more trouble than it's worth

Fully decoupled front ends
Administrative and public-facing

4

JavaScript framework
(client-side execution)

Node.js

JavaScript framework
(server-side
execution)

Drupal

Success!
Here are
others that
might interest
you:

Lorem ipsum
dolor sit
amet,
consectetuer
adipiscing.

Subscribe to our newsletter

E-mail address

Submit

Lorem ipsum
dolor sit
amet,
consectetuer
adipiscing.

Subscribe

E-mail

Submit

Lorem ipsum
dolor sit
amet,
consectetuer
adipiscing.

Fully decoupled Drupal

Client

Server

Synchronous

Asynchronous

HTTP
request

HTTP
request

Fully decoupled front ends

● Public-facing front ends are an approach
typically chosen to accelerate development of
the end user experience by JavaScript developers
— and require a strong client understanding of
the tradeoffs.

● Administrative front ends are replacements for
the Drupal editorial interface which provide the
same functionality as the traditional
administrative "back end" (e.g. Seven OOTB).

WordPress Calypso

Traditional WordPress vs. WordPress Calypso

WordPress

WordPress admin

Client

Server

Client

Server

Calypso admin
(React)

Node.js

Server-side React

WordPress

WordPress Calypso has no contextualized administration

WordPress

WordPress admin
Client

Server

Client

Server

Calypso admin
(React)

Node.js

Server-side React

WordPress

WordPress front end WordPress front end

Calypso considerations

● Calypso made a conscious decision not to tackle
the problem of no contextualized administration
on WordPress front ends, as features like in-place
editing, etc. have been less of a focus.

● A similar editorial interface for Drupal would have
the same set of issues.

Theoretical Drupal admin

Drupal

Drupal admin
Client

Server

Client

Server

Hypothetical Drupal
admin (React?)

Node.js

Server-side React

Drupal

Drupal front end Drupal front end

Can you contextually administer
fully decoupled front ends?

Edit the fully decoupled front end

● One option is to make some tools that are native
to Drupal's public-facing front end available as
part of an entirely decoupled front end.

● This would require us to include Node.js as a
dependency for Drupal — a LAMP back end
providing APIs and a Node.js-driven front end
providing SSR and a contextually administrable
front end.

● In other words: a complete front-end rewrite.

Hypothetical Drupal
admin (React)

Theoretical contextualized Drupal front end

Client

Server

Node.js

Server-side React

Drupal

Drupal front endDrupal front end

Node.js

Server-side React

Drupal

Hypothetical Drupal
front end (React)

Hypothetical Drupal
admin (React)

Drupal's contextual admin
history
● Just as there are concerns about forcing

authenticated users to download a JavaScript
framework when solely viewing Drupal pages
(rather than editing them) due to contextual
administration …

● … there were concerns about including jQuery
and Backbone on the same pages to provide for
in-place editing and the toolbar.

Hypothetical Drupal
admin (React)

Contextualized administration is easiest on a shared front end

Drupal front endDrupal front end When the Drupal front end and
Drupal admin are divergent,
contextual administration is
much more difficult.

When the Drupal front end and
Drupal admin are one and the
same, contextual
administration can take
advantage of shared tools.

Hypothetical Drupal
front end (React)

Hypothetical Drupal
admin (React)

Divergence is dangerous

A few hypothetical scenarios:

● Imagine building an in-place editing feature in
the same toolset and developer workflow as you
had built the content editing tool in.

● Imagine building a layout manager feature in the
same toolset and developer workflow as you had
built the more comprehensive layout manager in.

It's clear that a rewrite in JavaScript
would be a monumental effort

Approximating contextual admin in
divergent front ends is possible,
but are the available solutions
adequate?

The mythical "Edit" button
Prismic and Simpla

5

A quick anecdote ...

"Where is my
in-place editing?
contextual links?
toolbar?"

Headless CMS hazards

● Headless CMSes like Contentful and CloudCMS
pride themselves on refined and beautiful
editorial interfaces which are still fundamentally
series of forms.

● But, like WordPress Calypso, none of these
interfaces is available in the form of contextual
administration.

Prismic and Simpla are the among the first to try it

Prismic: Injected edit button

● Prismic allows JavaScript developers to include a
script that provides a deep-linked "Edit" button
back to the Prismic administrative back end on
any Prismic-provided content.

● These client-side "in-website edit buttons" allow
authenticated editors to navigate back to the
Prismic back end.

Prismic: Injected edit button

<script>

 window.prismic = {

 endpoint: 'https://<your-repository>.prismic.io/api'

 };

</script>

<script src="//code.jquery.com/jquery-2.1.1.min.js"></script>

<script type="text/javascript"

src="//static.cdn.prismic.io/prismic.min.js"></script>

<article data-wio-id="{insert document id}">

 (...)

</article>

Prismic: Contextualized preview

● Prismic allows editors to preview by providing a
series of steps (involving some infrastructure) for
both editors and developers:

○ Including a client-side prismic.io toolbar JS file

○ Creating a preview API endpoint

○ Adding a dependency for cookies

○ Adding a distinct route for previews

Simpla.io

● Simpla.io touts in-place editing, contextual
formatting tools, content modeling, and an API in
JSON that developers can consume.

● Simpla.io advertises itself as a "replacement for
the CMS" and is built in Polymer and Web
Components to enable separation of concerns
between contextual administration and the
public-facing front end.

Simpla.io

Can Drupal stack up with these on
contextual editing?

Decoupled layout
The case of RESTful Panels

6

Decoupled layout

● Decoupled layout involves the ability to manage
layouts for consumption by decoupled front-end
applications.

● This can either be a layout manager with no
transparency on the public-facing front end or a
layout manager solely on the administrative
interface.

RESTful Panels

● RESTful Panels is an approach that exports
Panels configuration as consumable JSON data
structures.

● However, it interpolates the desired content into a
data structure that mirrors the layout's
construction.

● drupal.org/project/restful_panels

Decoupled layout can be brittle

More control over
desired content by
developers (pure data
structures)

Less control over layout
management and
components therein by
editors

Better developer
experience, worse
editorial experience

Less control over desired
content by developers

(chunks of markup)

More control over layout
management and

components therein by
editors

Better editorial
experience, worse

developer experience

Giving JS devs chunks of markup
resurfaces the flaws of progressive
decoupling and "black boxes"

Better separation of concerns

● Providing both editorially administered layout and
raw data structures as separate concerns in a
single request might be ideal.

● JSON API could make this work by providing layout
as a related entity alongside a raw data structure
indistinguishable from a typical content request.

Epilogue:
Decoupled content strategy

7

Food for thought

What does this mean? It means potentially making
some difficult decisions:

● Maybe it means prestiging the editor and
marketer over the developer

● Maybe it means prestiging the developer over the
editor and marketer

● Maybe it means attempting to retain the status
quo

Prestige the editor and marketer

● Maybe it means adopting a JavaScript
framework like React for a decoupled front end to
enable the marketer — and to focus on only web

● Maybe it means emulating or otherwise
approximating other devices in the context of a
surrounding outside-in Drupal user interface

Prestige the developer

● Maybe it means adopting an agnostic approach
and providing components that require the
developer to finish the job

● Maybe it means becoming solely an API-first back
end and letting developers do the heavy lifting
from the front

Developer experience

Marketer experience

Drupal's new incongruity

Websites Responsive

Digital signage

Wearables

Set-top boxes

Augmented reality

Conversational

Mobile

IoT apps

Native
apps

Chat
apps

Single-
page
apps

Other
back
ends

Set-top
boxes

Smart
watches

Fitness
devices

Arduino
boards

Beacons AR/VR
apps

Rasp-
berry Pi

Conver-
sational

UIs

LED
displays

We have new channels every day.

IoT apps

Native
apps

Chat
apps

Single-
page
apps

Other
back
ends

Set-top
boxes

Smart
watches

Fitness
devices

Arduino
boards

Beacons AR/VR
apps

Rasp-
berry Pi

Conver-
sational

UIs

LED
displays

And ones we've never heard of yet.

?

?

?

? ?

Web is increasingly
only one facet of editorial concerns

Editorial preview

If an editor wants a high-fidelity preview of content on
their single-page application or native mobile
application, developers are required, for now.

Spin up a new test
environment

Push new content
(published or accessible)
to that test environment

Give the editor a URL to
inspect or a new app to
install

Editor can access
high-fidelity decoupled
preview

Is contextual admin dead?

● Perhaps contextual administration and faithful
preview shouldn't be a concern of CMSes;
perhaps it should be a platform or infrastructural
consideration.

● Fewer editors are using in-place editing and
similarly contextualized features.

● But we still ultimately need seamless preview for
editors and publishers without the aid of a
developer.

If contextual admin is dead,
decoupled content strategy
is the answer

Channel diversity vs. channel agnosticism

Channel diversity
(differentiated content
across channels)

Channel agnosticism
(single piece of content

for all channels)

Decoupled content strategy

● In this omnichannel age, maybe we need to tell
editors to be channel-agnostic with how they
write content and manage it visually.

● Maybe it means we need to focus on assembly of
just websites and encourage a more decoupled
content strategy for everything else.

From decoupled content
to decoupled content strategy

From visual control of everything
to everything visual is uncontrollable

This is the great test that will dictate
the next decade of Drupal

A multifaceted Drupal is
a more future-proof Drupal

Thanks to you, Drupal's story has
only just begun

Open discussion8

Join us for contribution sprint

● Mentored Core Sprint
Fri, 29 Sep — 09:00–18:00 — Stolz 2

● First-time Sprinter Workshop
Fri, 29 Sep — 09:00–12:00 — Lehar 1, Lehar 2

● General Sprint
Fri, 29 Sep — 09:00–18:00 — Mall

#drupalsprints

What did you think?

● Evaluate this session
events.drupal.org/vienna2017/sessions/decoupled
-site-building-drupals-next-challenge

● Take the survey!
surveymonkey.com/r/drupalconvienna

Vielen Dank! • Thank you!

Preston So has been a web developer and designer since 2001, a
creative professional since 2004, and a Drupal developer since 2007.
As Director of Research and Innovation at Acquia, Preston leads new
open-source and research initiatives and helms Acquia Labs, the
innovation lab featured in international press.

Previously, Preston contributed to the Spark initiative in the Drupal
project, co-founded the Southern Colorado Drupal User Group (est.
2008), and operated an award-winning freelance web and print
design studio. Preston has presented keynotes at conferences on
three continents in multiple languages.

preston.so@acquia.com • @prestonso • #decoupledsitebuilding

