


Drupal Core Auto-UpdateDrupal Core Auto-Update
ArchitectureArchitecture

Peter WolaninPeter Wolanin
David StraussDavid Strauss



Peter WolaninPeter Wolanin
BioRAFT Engineering & DrupalBioRAFT Engineering & Drupal

Security TeamsSecurity Teams

pwolaninpwolanin

Photo by , amazeelabs by-nc-sa



David StraussDavid Strauss
Pantheon CTO / Co-Founder & DrupalPantheon CTO / Co-Founder & Drupal

Security TeamSecurity Team

davidstraussdavidstrauss

Photo by , Dominik Kiss by-nc



BackgroundBackground
The Update Framework (TUF)
Paragon's Guide to Automatic Security Updates



Critical UnansweredCritical Unanswered
QuestionsQuestions

What problem are we actually trying to solve?
Which users or percent of sites would be helped?
What is the ROI for the Drupal project / community?



Is there a Use Case?Is there a Use Case?
Applicable only to sites with no QA process?
Core only or contrib too?
Taking all updates or only security?
Handle multiple web heads or only single?
Stricter BC requirements for contrib (and core)?



PersonasPersonas
Deploy and Ignore: Once the site has the functionality needed,
there's little maintenance or updating. Doesn't subscribe to PSAs.
Diligent but with Simple Needs: Typically applies updates within a
week of release, possibly longer for non-security updates. Follows
up on PSAs by directly updating the live site.
The Sophisticate: Needs to apply at least one build step (for CSS,
Composer, etc.). Runs QA in a pre-production environment. May
deploy to a multi-head cluster.



PremisesPremises
Few sites run just Drupal core.
Contributed modules have changing Composer dependencies.
Composer dependencies can, themselves, require security
updates.
Fundamentally changing the deployment requirements would be
bad (at a minimum, push the work to Drupal 9).
The most straightforward installation of Drupal should support
automatic updating.



Pick 2 or 3Pick 2 or 3
Security (integrity and availability)
Ease of use (reliability)
Compatibility (dependencies on libraries or PHP version)
Proudly Invented Elsewhere (PIE)



Insecure approachesInsecure approaches
WordPress-style

Webserver overwrites PHP �les
Single endpoint for updates: api.wordpress.org
Does not perform any digital signature veri�cation
Any compromise of the endpoint could compromise all sites auto-updating
https://www.wordfence.com/blog/2016/11/hacking-27-web-via-wordpress-
auto-update/



Option: Airship’s Auto-UpdateOption: Airship’s Auto-Update
FrameworkFramework

Pros
Someone else built it.

Cons
In-place update prevents multi headed con�gs
Requires PHP 7.2+
Their update system (while maybe secure) has a lot of marketing cruft and
seems very built around their product and is not componentized or broken
apart into a separate project.
Seems to go for perfect and not realistic.



Option: Other user accountOption: Other user account
updates coreupdates core

This option has been available for a long time for
people with scripting skips but seems little used.

Needs a CLI tool that can update core or modules
Requires some kind of process to build the new codebase an move
it into place
Hard to manage multiple web heads (or even one) without
downtime
Requires composer at least to download dependencies
Otherwise, suitable for sites with only core and custom modules?



Code as cache?Code as cache?
Are we thinking about the problem wrong? We have a
protected mechanism for writing PHP cache �les for

Twig - if that's secure enough can we use it for
everything?

Have an entry point for web requests
Have an auto-update subsystem
Most site code is a validated/signed/protected cache (e.g. PHAR or
mtime-protected)
Take inspiration from ostree, ChromeOS, and Cisco �rmware
updates to support atomic, distributed switching and rollback.
An immutable "cache" for more sophisticated or secure
deployments. Allow pinning the vendor directory.



Option: Monolithic PHAROption: Monolithic PHAR
DistributionDistribution

One PHAR for the entire site deployment
Built on Drupal.org servers (or af�liated infrastructure)
Minimizes complexity of the web server infrastructure
Pros

Simplicity
Could just be packages of full Composer runs

Cons
Heavy d.o infrastructure requirements
Might/would have to package all modules/themes/etc
Might not allow for any patches to code (can break the build)
Hard to download in one request



Option: Modular PHAROption: Modular PHAR
DistributionDistribution

One or more PHAR �les for core
One PHAR for each module
Decomposed dependencies (one PHAR per unique dependency)?
Pros

CDN catchability and mirror support
Lower bandwidth requirements than a massive �le

Cons
No direct support for decomposing Composer dependencies into PHAR �les
Harder than monolithic phar to support patches (makes them uncachable)
Need to create our own way to manage phar �les
Lose developer transparency
Lose compatibility with composer



RecommendationsRecommendations
Because contrib modules may have changing Composer
dependencies, full support for composer is key to any
comprehensive solution
The Composer dependencies themselves may need security
updates
Updates need to happen without human interaction
Updates need to be highly reliable and not resource-intensive
Overwriting �les in-place is undesirable: needs an atomic method
of switching to an updated code base
Support support multi-head setups (existing methods have no
path to doing so)



Possible Implications...Possible Implications...
Requires a writeable code directory - preferably outside the
docroot
Have a way to expose corresponding assets (css/js/images)
Drupal core and all code needs to be together in vendor/
Have a "bootloader" to pick the correct codebase (like ostree,
ChromeOS, and Cisco �rmware)
Needs to have a way to get a secure manifest
Core needs to have one or more public keys to base trust on



Possible Implications con'tPossible Implications con't
An incremental download and assembly of new codebase on cron
Amortized updates would improve compatibility
Add to core some support for downloading based on
composer.lock
Drupal install via autoupdate to insure future updates work
Disallow git repos and patches in composer.json
Add to core a way for web heads to register
Support a build step to generate an immutable build artifact to
deploy



One Way to Do ItOne Way to Do It
index.php: Bootloader. Initializes autoload path.
install.php: NetInstall style. Performs one "update" as part of
installation. Never used afterward.

�les/
vendor-kjfksld/

Composer-style layout of core and contrib.
vendor-sd�uj84/

Composer-style layout of core and contrib.
Vendor path would also be con�gurable.



Infrastructure forInfrastructure for
Dependency ResolutionDependency Resolution

Some of these services are already under consideration
and would help facilitate automatic updates by core or

via scripting

A secure key infrastructure and release signing or composer.lock
signing
A Composer UI?
A service to generate a composer.lock for site or a given
composer.json
Re-generating lock �les when then are updates (or only security
updates?)
We only need dynamic dependency resolution for contrib
updates. Core could be prebaked.



Discuss!Discuss!
Is there a clear problem and compelling use case?
Do you agree with our recomendations?
Do we have the resources to develop and maintain new infra?
Do we have resources and expertise to substantially rework the
code layout?
Drupal 8, 9, or 10?



What did you think?What did you think?
Locate this session at the DrupalConLocate this session at the DrupalCon

Nashville website:Nashville website:

Take the Survey!Take the Survey!
https://events.drupal.org/node/21010

https://www.surveymonkey.com/r/DrupalConNashville


