
PHASE2TECHNOLOGY.COM

Drupal Is Not
Your Web Site

Develop for high-scale, fragmented sites

DrupalCon Los Angeles 2015

Tobby Hagler
@thagler d.o: tobby

Presumptions and Expectations

• Intermediate level session, but experienced with site
building with Drupal and basic Devops

• Passing familiarity with the topics presented here, but not
significant experience with them

• Will be an overview of concepts; an introduction designed
to lead you to thinking about your site architecture

• Suggested modules and resources for implementation

Overview

• What a Web site really is

• The Origin and the Edge

• How does Drupal fit into your complete web sites’s stack?

• Other elements of a Web site to consider

• Removing things from Drupal to help overall performance

• Real-time and custom content updates on your Web site

A Brief Analogy

The Mighty Mississippi

Where does the Mississippi River begin?

Thousands of smaller estuaries

converge to give the Mississippi a start

The mouth of the Mississippi looks

nothing like the origin

Content Inclusion

From Origin to final output, many other

sources get included at different levels

of the stack

Origin isn’t aware of other sources or

how the final output will appear

The Web Site

A location connected to the Internet that
maintains one or more pages on the

World Wide Web.

Merriam-Webster

“ ”

http://info.cern.ch/hypertext/WWW/TheProject.html

Common Page Assembly Methods

• Static (flat) HTML files

• Server-side Includes (SSI)

• CGI, Scripting and template languages

• Content Management Systems (CMS)

• Edge-side Includes (ESI)

• Client-side assembly (Big Pipe)

Server-Side Includes (SSI)

• HTTP/Web server parses (.shtml) files for commands

• <!--#include file="/path/to/file.txt" -->

• <!--#include virtual="menu.cgi" —>

• <!--#if expr="${SomeBoolean}" --> … <!--#endif -->

;

Image courtesy drupal.org

Drupal Theming & Page Assembly

• User makes request for a Web page “/node/123”

• Drupal bootstrap process begins, callback function
executed, hooks invoked, etc.

• Content is dynamically rendered to HTML via theme
functions *

• HTML document is delivered to the user

* Ignore cache and other steps for now

The Web browser doesn’t care how the page is ultimately

generated. In the end, it will receive HTML that it will parse, and

make requests for additional elements (images, CSS files,

JavaScript files, etc.) and deliver the final presentation to the end

user.

The Web browser doesn’t care how the page is ultimately

generated. In the end, it will receive HTML that it will parse, and

make requests for additional elements (images, CSS files,

JavaScript files, etc.) and deliver the final presentation to the end

user.

What the browser displays may be different than the HTML it

receives. JavaScript may hide content or make additional requests

for more things to display (e.g., Single-page apps, Big Pipe)

Why is Drupal
not my Web site?

A Typical Drupal Implementation

• Nodes contain articles, stories, blog posts, etc.

• Blocks provide ancillary content that can be repeated

• Views lists pages of related or similar content

• Panels allows the arrangement of content pieces

• Theme provides design and user experience

So Drupal is my Web site?

With this simple implementation, what Drupal generates and the

HTML documents the user receives are essentially the same.

2 + 2 = 4 and 2 + x* = 4 are also essentially the same.

* Where x = 2

Performance
Considerations

Document delivery costs

• Static HTML costs (practically) nothing, file I/O; difficult to
maintain compared with a CMS

• SSI is largely file I/O and somewhat CPU intensive

• PHP code execution is memory intensive and CPU bound

• MySQL uses CPU, memory, and I/O heavily

• Resources limit the number of simultaneous users (traffic)

PHP execution is costly

Having the Web server invoke PHP, and having PHP retrieve

content and render a full HTML document on every page request is

resource intensive.

Drupal employs a number of caching systems and optimization to

reduce server stress.

Image courtesy drupal.org

Scaling Drupal

To be able to handle traffic, introduce multiple Web servers that all

serve Drupal’s content.

Employ various caching schemes in front and behind Drupal.

Drupal is the back-end

When behind Varnish or a CDN, the (unauthenticated) Web user

does not interact with Drupal directly*. The request is handled by

delivering content from cache, returning the same HTML document

sent to any other user requesting the same path. Drupal does not

and cannot return something different since Drupal never receives

the HTTP request.

* Assuming cache is already primed

Fragmentation

Drupal and Fragmentation

Drupal is already doing enough. It doesn’t need to do additional

processing to fetch content and ingest it. Offload some of the work

to other services. It’s OK to decentralize.

Use 3rd-party services because that’s where the content originates.

Sometimes Drupal isn’t the best thing to handle all of your content

Assembling Fragments

• Client-side Javascript

• AJAX

• WebSockets

• Varnish/CDN Edge-Side Includes

• Include content into a Varnish-cached page

Typical 3rd-Party Content

• User comments (Facebook, Disqus, LiveFyre)

• Twitter

• Real-time scores or standings

• Web pages hosted on legacy systems

• Breaking news alerts

• Analytics

Externally Hosted Comments

Externally Hosted Comments

Most commenting systems provide code (HTML, JavaScript, etc.)

that can be placed on the page.

Simply adding code and simple references to the parent page are

all that is needed. Drupal is otherwise unaware of that content.

Client-side Assembly

Implementing Real-Time Updates

• WebSocket specification

• WebSocket JavaScript Interface

• Socket.IO — Node.js project

• JavaScript framework and WebSocket API with long
polling

• Jetty — Java servlets and HTTP server

Live Scoring & Real-Time Updates

Socket.io
<script	 src="/socket.io/socket.io.js"></script>	
<script>	
	 	 var	 socket	 =	 io.connect('http://localhost');	
	 	 socket.on('scores',	 function	 (data)	 {	
	 	 	 	 console.log(data);	
	 	 	 	 socket.emit('score	 event',	 {	 my:	 'data'	 });	
	 	 });	
</script>

Live Scoring & Real-Time Updates

• The node template places a placeholder with a token for
the score block

• Browser makes asynchronous HTTP request to the scoring
server, establishing a web socket between server and client

• Score changes are pushed to browser without polling or
updating the page

• Drupal is unaware of the content of that placeholder

Edge-Side Includes

Varnish and many CDNs established the ESI specification.

Allows for fragments of content to reside elsewhere and be

assembled on the Edge.

Allows for mixing of unauthenticated (cached) content with

authenticated elements (i.e., “Welcome user”).

ESI Fragments

• Register a menu callback in Drupal to generate content
with an abbreviated callback

• /esi/user/welcome/f1667cc8f3f9f55a

• <esi:include src=“/path/to/callback”/>

• <esi:include src="http://example.com/some/path"/>

http://example.com/some/path

Authenticated/Unauthenticated

• Authenticated traffic bypasses much of the caching layer

• Use ESI to provide customized service on an otherwise
unauthenticated, cached page

• An unauthenticated page is heavily cached; ESI provides
the customization users are used to seeing

Drupal Modules and Resources

• drupal.org/project/cdn

• drupal.org/project/esi

• socket.io

• www.varnish-cache.org/docs/3.0/tutorial/esi.html

• www.akamai.com/html/support/esi.html

Questions?

Software Architect

Email: thagler@phase2technology.com

Tobby Hagler

Twitter: @thagler

Drupal.org: tobby

PHASE2TECHNOLOGY.COM

