
Building Healthy Multilingual
Relationships: Correctly Nest Entities
Aimee Hannaford

aimeerae
Christian López Espínola

penyaskito

2

Aimee Hannaford
CPWA, PMP, SCPM, CSM, CSPO

aimeerae

aimee@aimeerae.com

2

Christian López Espínola
Lingotek, D8/D9 integration development

penyaskito

clopez@lingotek.com

2

Thanks for all the fish!

Thank you to the Drupal community
and its evolving initiatives to support
a more inclusive web.

Thank you to Hook 42 & Lingotek for
eight years of multilingual
collaboration.

About this session

● Primarily focused on Drupal 8+.
● We can’t cover everything.
● Multilingual nesting is complex.
● Focus on the most common Content Entities.
● We will cover configurations and their expected outcomes.
● Every site is different, but use similar configuration patterns.
● Configuration patterns can be applied to your site.

This session is recorded the presentation deck will be be shared.

Why are we really here?

Drupal is a
powerful
platform
There are a lot of moving
parts to make a
functional website!

● Feature-rich
● Extensible
● Scalable
● Flexible
● Multilingual

Expectations
vs.
Reality
Prevent unhappiness
with clear expectations
and provide a
predictable, functional
website.

Reality
With great flexibility
comes complexity.

So many permutations...

● Site-building approaches
● Content editing interfaces
● Display and theme layer
● Content publication
● Customization
● Evolving best-practices

Multilingual support
exponentially increases
test cases and
complexity.

“Where there is great power there
is great responsibility.”

- Winston Churchill, 1906
- Uncle Ben Parker, Spiderman

Getting Started

Understanding Multilingual
Content & Site Strategy

Translation vs. Localization

The process of translating
words or text from one
language to another.

The process of adapting a
product, application or
document to meet the
language, cultural and other
requirements of a specific
target market (a locale).

Translation Localization

Translation vs. Localization

Translation Localization

Define content business rules

Use a realistic, language-first approach through discovery.

Key topics:

● Resources: Initial budget & time, ongoing support, people.
● Markets: Language, locale, and translation expectations.
● Purpose: Content types, products, use cases, frequency.
● Interface: Design and UI of the site, all locales.
● Creation: Content editing tools and workflows.
● Storage: Per-field content needs.

Expected display

Key questions:

● Is the whole page structure the same across languages?
● Does any region of the page’s structure change per locale?
● Does the page structure change drastically across locales?
● Does any part of the content need to change per locale?

○ Page content is 90% the same as source language.
○ 10% of page has locale specific content.

Content creation & editing tools

Key questions:

● Who updates content? Who translates content?
● What control does an editor have? Copy? Layout?
● What responsibilities do the translators have?
● Are some people combination editors and translators?
● What is required for content approval?
● How and when does content change per locale?
● What is the proposed Drupal layout approach?

Content storage and field planning

Questions to ask for each field of a content entity:

● Does the field content stay the same for each language?
● Does the field content value(s) stay the same, but need to

display in a translated language?
● Does the field content contain non-translated or language

specific information?
● How will the field content be displayed?

Overcoming challenges in discovery

● Define what translation and localization mean to the project.
● Define lifecycle of every type of content, including translation.
● Teach everyone about multilingual basics (based on role).
● Define expected content differences across locales.
● Define content types, workflow, and translation needs.
● Define media content needs very early.
● Document everything!

Education & full team involvement

“If you fail to plan, you are
planning to fail!”

- Benjamin Franklin

Multilingual &
Nesting
Fundamentals

Expectations
Drupal’s multilingual
system will work all the
time because it is in core.

● Content entities are language aware.
● Content entities have fallback rules.
● Entity management APIs have

multilingual support.
● Modules can build off the consistent

ML system.

Reality
Functional multilingual
configuration is not just
content entities.

● Language detection
● Language fallback
● Display and theme layer logic
● Extensions from contrib
● Site customizations
● Interaction with content editing

interfaces

Content entities

● Many: Node, Taxonomy Term, Media, Custom Blocks,
Paragraphs, Custom Entities, and more...

● Content entities can be translated or not translated.
● Content entities have language display fallback rules.
● Content entities have fields that can be translated, if desired.
● A content entity must be configured for translation if any

fields within the content entity need to be translated.

24

Field-level multilingual configurations

● Each field can be configured for translation if the content
bundle is configured for translation.*

● A field can be one of two types:
○ It contains content.
○ It points to another content entity (entity relationship) or even a

concrete revision (entity reference revision)!

* we will cover paragraphs later

Field-level multilingual configurations

When a field is translated, the field’s value can change across
locales.

If a field is not translated, the value stays the same across
locales.

Field-level multilingual configurations

Translated Content (text field):
source en: green
translation spanish: verde

Expected behavior:
● Content for Spanish will be a translation of the English source.
● A translation of Spanish must exist to display in Spanish.
● If no Spanish translation exists, content is displayed using language

fallback rules.

Field-level multilingual configurations

Non-translated Entity Reference:
Source en value: entity1, entity2.
Parent entity es value: enity1, entity2

Expected behavior:
● Content for Spanish will be a translation of the English source.
● Parent entity displays Spanish versions of entity1 and entity2.
● Content for Spanish must exist in Spanish to display in Spanish.
● If no Spanish translation exists, the language fallback rules of the

referenced entity apply.

Field-level multilingual configurations

Translated Entity Reference:
Source en: entity1, entity2 - Product Variant 1 and 2
Translation es: entity3, entity4 - Product Variant 3 and 4

Expected behavior:
● Content for Spanish will be different than the English source.
● Content for Spanish must exist in Spanish to display in Spanish.
● If no Spanish translation exists, the language fallback rules of the

referenced entity apply.

Nesting

● To include one or more Content
Entities within another content
entity, either by an Entity
Reference field or extended entity
manager.

● All multilingual content bundle
and field level configuration
expectations apply for each
nested entity bundle.

First rule of Entity Nesting:
Don’t nest.

Avoid nesting in your content strategy as much as
possible.

Second rule of Entity Nesting:
Don’t use a data model for layout.

“Avoid leveraging systems meant for data
structure for layout definition.”

- Kris Vanderwater, Acquia

Third rule of Entity Nesting:
Keep it simple and consistent.

There are numerous permutations that affect predictable
display.

Use consistent site-building patterns and display logic
across content entities.

Paragraphs.
Node References.
Custom Content Entities.

There wasn’t anything
else available for
editors to control
layouts!

Layout management
for end users is
improving!

Some sites may still use
deep nesting
approaches.

Common issues

● Are translations configured correctly?
● Check configs again! Settings must be correct on every

nested entity bundle and field.
● Check for field reuse and misaligned configurations.
● Do translations exist? Are they published?
● Are the permissions correct?

Why is the wrong language showing?

Common issues

People use content choices + display logic to drive multilingual
display beyond what is provided in core. Each language-specific
display customization can cause unexpected results and/or bugs.

● Display logic within views.
● Display logic at theme layer (Twig, preprocessors).
● Display logic driven by content fields (locale choosers).
● With many site-building permutations, edge cases exist.

Core + configuration + customization

Common issues - bugs

● Many modules and widgets manipulate content during editing and can
create unexpected behaviors and/or bugs.

● Nested entities do not get the correct language passed from parents in
content edit mode.

● Symptoms:
○ Nested entity language does not match intended translation language.
○ Nested entities display in source language.
○ Nested entities display in direct-parent language.
○ Nested entities are created in the default language.

Why is the wrong language showing?

Common issues

● Complexity impacts page performance (in edit and display).
● High number of loaded entities per rendered page.
● Multiple revisions stored on each edit (large db size).
● Exponentially larger number of revisions and storage.
● Revisions multiply by the number of supported locales.
● Revisions multiply by revision frequency.

Why is the site slower with multilingual?

Common
Nesting
Examples

Single Entity Reference

● Taxonomy used for Display Rules/CSS Styles?
○ Don’t translate the taxonomy terms.
○ Only translate the Entity Reference if you want the display to change per locale.
○ Expected behavior: terms passing classes will not be translated/changed

● Taxonomy used for Content Categorization?
○ Create the taxonomy terms and translate them in a separate workflow.
○ Entity Reference field is non-translated.
○ Expected behavior: term applied to source language stays the same in all languages;

translation is displayed.
● Free-form tagging and User Generated Content?

○ Consider not translating the terms.
○ Requires a richer context-based analysis to define the “best” configuration.

Node with Taxonomy Term Entity Reference

Single Entity Reference
Node with Taxonomy Term Entity Reference

Single Entity Reference

● The Media asset file is the same for all languages:
○ A picture without embedded text.
○ Do not translate the Media Entity Reference field.

● Are the Media assets translated?
○ Do not translate the Media Entity Reference field.
○ All language/locale permutations are managed at the Media entity level.
○ Expected behavior: Media assets should have a separate translation workflow.

● Are the Media assets language/locale specific?
○ Consider translating the Media Entity Reference field, it will allow different Media

entities to be chosen per locale.
○ Sample: Language-specific PDF manuals. Each manual is a single Media Entity with a

specific language. The translated page can reference the correct manual.
○ The “right way” would be to translate the actual file and bind all language manuals

together.

Node with Media Reference

Single Entity Reference

● Is the block used across multiple entities?
○ Translate the block through its own separate workflow.

● Is the referenced block the same across translations?
○ Do not translate the Custom Block Entity Reference field.
○ All language/locale permutations are managed at the Block entity level.
○ Expected behavior: shared/reusable custom blocks should have their own translation

workflow
● Are the Blocks language/locale specific?

○ Consider translating the Custom Block Entity Reference field, it will allow different
reusable Custom Block entities to be chosen per locale.

○ Sample: Locale-specific blocks for promotion. Each promotion block is a single block
entity with a specific language. The translated page can reference the correct locale
block.

Node with a reusable Custom Block

Entities inside entities

● Most follow the same multilingual configuration pattern.
● Questions to ask yourself for configuring translatability:

○ Is the nested entity reference different between locales?
○ Is the nested entity re-used somewhere else?
○ Is the nested entity used on their own? (e.g. can be navigated to?)

● This also applies to headless sites using Drupal as a backend.

Working with the many other entities.

● Paragraphs goal is flexible structure of content.
○ It was not conceived as a layout tool.

● Are different translations going to allow different paragraphs?
○ Requires good planning beforehand to define the “best”

configuration.
○ Only translate the Entity Reference Revision field if you want the

content to change per locale.

Single Entity Reference
Node with Paragraphs (Entity Reference Revisions)

Single Entity Reference
Node with Paragraphs (Entity Reference Revisions)

Complex
Nesting
Component-based
site-building approaches

Asymmetrical vs Symmetrical

Layout display is the same between the
source and locales of the same content
entity.

Example:
Node 1 in English is directly translated to
other languages. Each translated locale
for Node 1 looks the same.

Layout display and translated versions of
content differ between locales of the
same content entity.

Content translations are not strictly tied
to the source language are often
decoupled from the source language,
even though they are stored in the same
content entity. Translated locales can
look different from the source locale.

Symmetrical Asymmetrical

Paragraphs
Req’s from core:

● 4 Multilingual modules

Req’s from contrib: ERR + Paragraphs

Extensions for ML support:

paragraphs_asymmetric_translation_widgets

Considerations: needs migration if
changing translatability

https://www.drupal.org/project/paragraphs_asymmetric_translation_widgets

Nest level 2 - Node
with a single-level
paragraph
The way paragraphs were intended
to use.

Business expected behavior
compared to configuration settings:

If we consider this a flexible
component structure: can be
customized per language?

Nest level 2 - Node
with a single-level
paragraph
The way paragraphs were intended
to use.

Business expected behavior
compared to configuration settings:

If we consider this a flexible
component structure: can be
customized per language?

Layout Builder

● Provided in core.
● Provides a user interface for layout configuration.
● Stores block and layout information in the content entity.
● Custom blocks created within Layout Builder are non-reusable

blocks that only exist within the scope of the content entity.
● Enabling Layout Builder allows for default display layout configs.
● Layout Builder Overrides provide layout edits per content entity.

Basics

Layout Builder

Layout builder is used define default display structures within a View
Mode.

● Content entities and fields follow all translation rules.
● If translation exists and field is displayed in Layout Builder, the

field displays in the correct language.
● Use of Reusable Custom Blocks will follow the basic blocks

pattern.

For default display structure

Layout Builder

Layout Builder provides layout tools and a content creation interface.

● If only fields on the content entity are used, then translated
language should display OK.

● All locales of the entity will have the same layout.
● Creation of custom blocks within Layout Builder maintain their

source language.
● Using a reusable block will follow the blocks entity reference

pattern. If translated, then block should show the correct language.

For entity level overrides (core)

Layout Builder

Layout Builder contrib provides two models for managing layout and
content translation for overrides. You can only use ONE method per
site. Choose mindfully.

● Asymmetric Translations (layout_builder_at):
○ Pros: Each locale can support localized content.
○ Cons: After the first translation from the source language, content and display are

completely decoupled per locale.
● Symmetric Translations (layout_builder_st):

○ Pros: Source and translated locales are kept in sync
○ Pro/Con: Display is the same across all locales.

Multilingual extensions from contrib

Common deep-level nesting cases

Node > Para 1 (layout) > Para 2 (content fields) > Media Reference

Landing Page > Paragraph 1 (layout) > Paragraph 2 (content fields) > Product page > Media Reference

Asymmetrical Considerations

If you do NOT have the extra module,
then don’t translate the ER field for
paragraphs (it assumes all paragraphs are
the same and will only show translated
field data).

If you use the asymmetric module, the
ER field must be marked for translation.

Translated locales can look different from
the source locale.

Each translation forks off of the source
language and becomes its own layout.

You can choose only one method!

Switching after content exists may lead
to content loss.

Paragraphs Layout Builder

Considerations

● Don’t just mark every field translatable on your site.
○ It can cause confusion to the content team.
○ It can create unexpected site bugs during translation.

● If a text field or select list is used to define layout, don’t translate it.
● Consider other field constraints, like character limits.
● Use of content moderation and locale-specific publication status.
● Consider timing source content completion and initial translation,

especially in asymmetrical translation models.

Multilingual tooling efforts

● Consistent Multilingual configuration patterns for each content
entity, use case, and nesting approach.

● Enhanced editor tools, language switchers, workflow management.
● Switching asymmetrical to symmetrical models without a

migration.
● Modules to clean up bloated revisions in the database.
● Testing! There many multilingual edge cases with contrib.
● Testing! Don’t only use the Drupal interface.

Plan.
Test.

Don’t Assume.
Revisit.

Translate.

Resources

Presentations:

● This presentation: https://bit.ly/dcg-2020-ml-nesting
● Entity references gone wild (Jakob Perry):

○ https://drupal.tv/external-video/2018-08-24/entity-references-gone-wild-how-relationships-c
an-sink-your-project

● Your data model is terrible! (Kris Vanderwater):
○ https://www.midcamp.org/2020/topic-proposal/your-data-model-terrible-let-me-show-you-w

hy

● Connect with us!:
○ aimee@aimeerae.com
○ clopez@lingotek.com

65

https://bit.ly/dcg-2020-ml-nesting
https://drupal.tv/external-video/2018-08-24/entity-references-gone-wild-how-relationships-can-sink-your-project
https://drupal.tv/external-video/2018-08-24/entity-references-gone-wild-how-relationships-can-sink-your-project
https://www.midcamp.org/2020/topic-proposal/your-data-model-terrible-let-me-show-you-why
https://www.midcamp.org/2020/topic-proposal/your-data-model-terrible-let-me-show-you-why
mailto:aimee@aimeerae.com
mailto:clopez@lingotek.com

