
Build & Launch Tools (BLT)

Automating best practices for enterprise sites

Who are you?

● Matthew Grasmick
● @grasmash on Drupal.org, twitter, etc.
● Acquia Professional Services, 4yrs
● Drupalist, 9yrs
● Maintainer of BLT

Let’s start with the problem

that we’re solving.

FTP

This was good
It was fast and simple.

But it had problems!

● We’d overwrite each other’s files
● We couldn’t track or revert changes
● It wasn’t redundant or resilient

FTP

This was better
But also a bit more complicated.

Meanwhile...
Our backend tools were evolving

This was better
But also a bit more complicated.

Meanwhile...
Our front end tools were changing too

This was better
But also a bit more complicated.

Meanwhile...
We starting getting great testing tools

This was better
But also a bit more complicated.

Meanwhile...
Our local environments were changing

This was better
But also a bit more complicated.

Meanwhile...
The PHP community continued to evolve

These are all great tools!
That we run locally.

Teams have many machines
And continuous integration requires even more machines

At some point it became very complex

And painful.

This is the problem

We’re trying to solve.

Real world consequences

1. You don’t use these tools
a. You don’t have a build process to manage dependencies
b. You don’t use automated testing
c. You don’t have a CI process

2. You spend a long time orchestrating these tools
a. You painstakingly create your own build process, for every project
b. You configure your own CI setup, for every project
c. You maintain it constantly, for every project

There has to be a way...
To approach this more consistently and efficiently.

Build & Launch Tools

BLT

Package, integrate, automate
A stack of Drupal development tools.

What’s in the box?

BLT high-level features:

● Open source
● Standardized template for Drupal 8 sites
● Set of tools for building, testing, deploying
● Commands for automating usage of those tools

Template

What is the template?

● Pre-defined structure for files and directories
● Boiler plate code and configuration

Opinionated placement of...

● Settings files
● Exported configuration
● Modules, themes, profiles, etc.
● Drush commands
● Patches

Nothing earth-shattering.

Actually, it’s kind of a big deal.

Why is it helpful?

● Faster on-boarding
● Better collaboration
● Simpler hand-offs

Tools

We’re all using the same things

● The same tools, the same versions
○ Testing tools
○ PHP Packages
○ Modules

● Preconfigured to work together

Also a big deal.

What makes this powerful?

Automation!

Make complex things simple

● Create an entire project
● Boot (& create) a VM
● Validate all of your code
● Test you application
● Sync environments
● Deploy to cloud

… in one command

Seeing is believing.

Warning: we’re going CLI.

Creating a new project

Use composer $ composer create-project
 acquia/blt-project
 [project-name]
 --no-interactionand then wait a bit..

You have a complete project!

Install blt alias
and then you can use “blt”

$ composer blt-alias

Setup LAMP stack
Dev Desktop, DrupalVM, MAMP,

Native LAMP, etc.

$ blt vm

You have a virtual machine!

Let’s do the other [local] stuff.

Do all the [local]
things

● build dependencies
● install drupal
● import configuration
● set file permissions

$ blt setup

You have a fully functional Drupal site!

That’s a lot of work
you didn’t have to do.

Login to Drupal
because it’s ready to go

$ cd docroot && drush uli

You’ve only run 4 commands.

Automated testing

Don’t freak out.

We provide the tools and example tests

● Testing

○ Behat

○ PHPUnit

● Validation

○ PHPCS

○ Linting (PHP/Twig)

Validate code
phpcs, lint, composer

The right standards, on the right
extensions, in the right dirs

$ blt validate

Run them all!
Behat, PHPUnit all rolled up.

$ blt tests

Let’s stop and appreciate this.

©2016 Acquia Inc. — Confidential and Proprietary

http://www.youtube.com/watch?v=752VmEoBI4M

Let’s talk about workflow
Not just local development

Build & TestDevelop, Build
& Test

Review Deploy

Continuous
Integration

CloudE.g., GitHubLocal
Machine

BLT BLT

With this workflow...

Before merging, you:

● Test your changes automatically
● Review your changes on GitHub
● Preview your changes on a dedicated environment

Gives the confidence

To merge a deploy code

Adding Continuous Integration

Acquia Cloud CD and Travis CI out-of-the-box.

We provide CI config
You don’t need to figure it out.

Acquia Cloud
CD pipelines

acquia-pipelines.yml

$ blt ci:pipelines:init

You now have
acquia-pipelines.yml

pre-configured.

Travis CI
.travis.yml

$ blt ci:travis:init

You now have
.travis.yml

pre-configured.

Push
to the Cloud

$ git commit -a

$ git push origin

CI + BLT will build & test your site

Triggered by a push or pull request

Your tests run before
merging
so you don’t break things.

After merge, code deploys
all by itself.

Build & TestDevelop, Build
& Test

Review Deploy

Continuous
Integration

CloudE.g., GitHubLocal
Machine

BLT BLT

Deploying to the Cloud
Deployment is special.

Only deploy artifacts!
Wait what? What’s an artifact?

Things you need for

development process

Things you need for

production website

!=

<>

Development Artifact

#navbar {
 width: 80%;
 border: solid red 1px;
 float: left;
 padding: 5px;

 ul {
 list-style-type: none;
 }
 li {
 float: right;
 a {
 font-weight: bold;
 color: red;
 }
 }
}

Development (SASS)
#navbar {
 width: 80%;
 border: solid red 1px;
 float: left;
 padding: 5px;
}

#navbar ul {
 list-style-type: none;
}

#navbar ul li {
 float: right;
}

#navbar ul li a {
 font-weight: bold;
 color: red;
}

Artifact (CSS)

.drush-use

.git/

.gitignore

.idea/

.travis.yml

.vagrant/
README.md
Vagrantfile
box/
build/
composer.json
composer.lock
config/
docroot/
drush/
drush.wrapper*
example.project.local.yml
factory-hooks/
hooks/
patches/
project.local.yml
project.yml
readme/
reports/
scripts/
tests/
vendor/

Development
.gitignore
composer.json
composer.lock
config/
docroot/
drush/
factory-hooks/
hooks/
scripts/
vendor/

Artifact

Build & Test

Build Artifact & Push

Develop Review

Working Repo Artifact

Push

Why are we doing this?
Lots of good reasons.

Improves process, improves product.

● Maintainability
○ Prevents hacking contrib & core (not committed).
○ Deployments are scripted and repeatable (update hooks are required).

● Performance
○ Removes unnecessary tools and libraries.

● Security
○ Artifacts are sanitized.

Show me.
Manual deployment is good for debugging.

deploying
manually $ blt deploy

from your local machine

What just happened?

● A deployment artifact was created at your/project/path/deploy
○ Files were copied.
○ Front end assets were compiled.
○ Prod dependencies were built.
○ Directory was sanitized.
○ Everything was committed.

● The deployment artifact was:
○ Committed to the “<original-branch>-build” branch.
○ Pushed to ${project.git.remotes}

Recap

BLT is a box with:

● Standardized template for Drupal 8 sites
● Set of tools for building, testing, deploying
● Commands for automating usage of those tools

Make complex things simple

● Create an entire project
● Boot (& create) a VM
● Validate all of your code
● Test your application
● Deploy to cloud

… in one command

Build & TestDevelop, Build
& Test

Review Deploy

Continuous
Integration

CloudE.g., GitHubLocal
Machine

BLT BLT

Thanks!
Questions?

Reminder: Sprints are tomorrow!

github.com/acquia/blt

@grasmash

bit.ly/2oa9j1w

