
Drupal & Composer
Matthew Grasmick & Jeff Geerling

Speakers

Matthew Grasmick
@grasmash

Acquian
BLT maintainer
10+ years of Drupal

Jeff Geerling
@geerlingguy

Acquian
Drupal VM maintainer

Agenda

● Composer Overview ~40 min

● Hands-on exercises ~30 min

● Advanced Topics ~20 min

● Hands-on free-for-all ~30 min

Total ~2 hrs.

What is Composer?

Composer is a dependency management
tool for PHP.

It allows you to install, update, and load the PHP libraries that your PHP application
depends on.

What does that mean?

Let’s look at the type of
problem Composer solves

Say you have a Drupal 7 application.

It requires jCarousel.

A third party, external dependency.

You download the tarball, decompress, move it into place. Voila!

Easy, right?

Except when it isn’t.

Versions matter.

Your hypothetical Drupal 7 site requires:

● Drupal Core, which requires jQuery 1.2.0.
● jCarousel, which requires jQuery 1.3.0.

1.2.0 != 1.3.0

Uh oh!

What do you do?

In Drupal 7, we used

● Various contributed modules

● Hacky workarounds to load multiple versions of jQuery.

That worked for dealing with a single library incompatibility.

Enter Drupal 8

Drupal 8

In Drupal 8, we use lots of third-party, external dependencies, like

● Symfony

● Doctrine

● Twig

● Etc.

This is good.

● We’re getting of the island and using libraries used by the rest of the PHP community!

● We’re using software that is Proudly Found Elsewhere (and tested / supported elsewhere)

● We’re not re-inventing the wheel!

But it gets complicated fast.

Say you have a Drupal 8 site that requires...

● Drupal Core, which requires ...
○ Symfony components
○ And dozens of other things
○ Which in turn require more things

● CSV Serialization module, which requires League CSV

● Views Slideshow module, which requires ...
○ jQuery Cycle, which requires jQuery

● Bootstrap theme, which requires jQuery.

● Guzzle (for a custom module), which requires PSR HTTP message.

● Drush, which requires ...
○ Symfony Yaml
○ And dozens of other things
○ Which in turn require more things

Imagine resolving an
incompatibility it that tree.

This is dependency hell.

We need a dependency
manager.

This is not a novel
need.

● Javascript:

○ NPM

○ Yarn

○ Bower

● Ruby

○ Bundler

● PHP

○ Composer!Dependency management is a
fundamental part of software
engineering.

How does it work? Demo time.

Install composer

1. Download Composer @
getcomposer.org/download

2. Execute command ...

$ php composer-setup.php
--install-dir=bin
--filename=composer

Install composer $ brew install composer

If you are a Homebrew user on
OSX, execute...

OSX Only!

Create a new PHP
project from
scratch.

Not Drupal. Just a directory and an
empty PHP file.

Make a directory.
$ mkdir my-new-project
$ cd my-new-project

Create an empty file.
$ touch index.php

directory tree

● my-new-project
○ index.php

Initialize Composer
for the project

This creates composer.json.

$ composer init

directory tree

● my-new-project
○ composer.json
○ index.php

What should our app do?

Log stuff. We want a PHP script that logs messages to a log file.

Let’s see if a PHP library
already exists

That handles logging stuff. Like writing files, defining level (info, warning, error),
timestamps, etc.

Find a dependency

On packagist.org.

Find a dependency

On packagist.org.

Require the
package

This command discovers the
library, determines correct version,
and downloads it.

$ composer require
monolog/monolog

Under the hood.

Images from “Composer the right way,” Rafael Dohms

Images from “Composer the right way,” Rafael Dohms

Images from “Composer the right way,” Rafael Dohms

Images from “Composer the right way,” Rafael Dohms

Images from “Composer the right way,” Rafael Dohms

Images from “Composer the right way,” Rafael Dohms

directory-tree

● my-new-project
○ composer.json
○ composer.lock
○ index.php
○ vendor

■ monolog
● monolog

○ Src
■ autoload.php

directory-tree

● my-new-project
○ composer.json
○ composer.lock
○ index.php
○ vendor

■ monolog
● monolog

○ Src
■ autoload.php

directory-tree

● my-new-project
○ composer.json
○ composer.lock
○ index.php
○ vendor

■ monolog
● monolog

○ Src
■ autoload.php

directory-tree

● my-new-project
○ composer.json
○ composer.lock
○ index.php
○ vendor

■ monolog
● monolog

○ Src
■ autoload.php

directory-tree

● my-new-project
○ composer.json
○ composer.lock
○ index.php
○ vendor

■ monolog
● monolog

○ Src
■ autoload.php

Let’s implement it.

<?php

// Require Composer's autoloader.

require __DIR__ . "/vendor/autoload.php";

use Monolog\Logger;

use Monolog\Handler\StreamHandler;

// Create a logger

$log = new Logger('my-log');

$log->pushHandler(new StreamHandler(__DIR__ . "/my.log", Logger::WARNING));

// Log a message!

$log->error('I did it!');

index.php

<?php

// Require Composer's autoloader.

require __DIR__ . "/vendor/autoload.php";

use Monolog\Logger;

use Monolog\Handler\StreamHandler;

// Create a logger

$log = new Logger('my-log');

$log->pushHandler(new StreamHandler(__DIR__ . "/my.log", Logger::WARNING));

// Log a message!

$log->error('I did it!');

index.php

<?php

// Require Composer's autoloader.

require __DIR__ . "/vendor/autoload.php";

use Monolog\Logger;

use Monolog\Handler\StreamHandler;

// Create a logger

$log = new Logger('my-log');

$log->pushHandler(new StreamHandler(__DIR__ . "/my.log", Logger::WARNING));

// Log a message!

$log->error('I did it!');

index.php

<?php

// Require Composer's autoloader.

require __DIR__ . "/vendor/autoload.php";

use Monolog\Logger;

use Monolog\Handler\StreamHandler;

// Create a logger

$log = new Logger('my-log');

$log->pushHandler(new StreamHandler(__DIR__ . "/my.log", Logger::WARNING));

// Log a message!

$log->error('I did it!');

index.php

Execute it

Execute the script.
$ php -f index.php

It works!

Execute the script.
$ php -f index.php

Look in the log file.
$ cat my.log
[2018-03-25 12:05:00] my-log.ERROR: I did it! [] []

Let’s add some dev tools.

Like PHP Codesniffer.

We use it during development only to make sure our code is nicely formatted.
We don’t need it to run our logger.

Require a dev dependency.

$ composer require squizlabs/php_codesniffer --dev

Indicates this is a dev-only
dependency

● my-new-project
○ composer.json
○ composer.lock
○ index.php
○ vendor

■ bin
● phpcs

■ monolog
● monolog

○ src
● autoload.php

■ squizlabs
● php_codesniffer

New executables

In vendor/bin

Execute the binary

$./vendor/bin/phpcs --standard=PSR2 index.php

Executes new phpcs binary

The dev tool is part of the
project repo.

If you clone the repo, you have phpcs. No need to install separately. Neat.

Recap.

We built a logging
app from scratch.

$ mkdir my-new-project
$ cd my-new-project
$ touch index.php
$ composer init
$ composer require monolog/monolog
Wrote a few PHP lines.
$ php -f index.php
$ cat my.log
$ composer require
squizlabs/php_codesniffer --dev
$./vendor/bin/phpcs
--standard=PSR2 index.php

Created project

Added libraries

Added dev tools
Ran the app

Sniffed code

In less than 10 commands.

Let’s look in more depth.

Library consumer

Packagist

Library consumer

Packagist

Library

Library consumer

{
 "require": {
 "monolog/monolog": “^1.0”
 }
}

{
 "require": {
 "monolog/monolog": “^1.0”
 }
}

{
 "name": ”monolog/monolog”
 ...
}

{
 "require": {
 "monolog/monolog": “^1.0”
 }
}

{
 "name": ”monolog/monolog”
 ...
}

composer.json

{
 "require": {
 "monolog/monolog": “^1.0”
 }
}

{
 "name": ”monolog/monolog”
 ...
}

composer.json

composer.json

composer.json schema

metadata for consumers

{
 "name": "grasmash/my-new-project",
 "description": "My nifty thingee.",
 "authors": [{ "name": "Matthew Grasmick" }],
}

composer init

metadata for vendors

{
 "name": "monolog/monolog",
 "description": "Sends your logs to files, sockets, inboxes, databases and
various web services",
 "keywords": ["log", "logging", "psr-3"],
 "homepage": "http://github.com/Seldaek/monolog",
 "type": "library",
 "license": "MIT",
 "authors": [{ "name": "Jordi Boggiano" }],
}

metadata for consumers

 "name": "grasmash/my-new-project",
 "description": "My new project.",

Everything is a package

require

{
 "name": "grasmash/my-new-project",
 "require": {
 "monolog/monolog": "^1.23.0",
 },

 "require-dev": {
 "squizlabs/php_codesniffer": "^3.2.3",
 },
}

composer require

require

{
 "name": "monolog/monolog",
 "description": "Sends your logs to files, sockets, inboxes, databases and
various web services",
 "require": {
 "php": "^7.0",
 "psr/log": "^1.0.1"
 },
}

metadata for consumers

 "name": "grasmash/my-new-project",
 "description": "My new project.",

require-dev

{
 "name": "grasmash/my-new-project",
 "require": {
 "monolog/monolog": "^1.23.0",
 },

 "require-dev": {
 "squizlabs/php_codesniffer": "^3.2.3",
 },
}

composer require --dev

require-dev

{
 "name": "monolog/monolog",
 "require-dev": {
 "phpunit/phpunit": "^5.7",
 "graylog2/gelf-php": "^1.4.2",
 "sentry/sentry": "^0.13",
 "jakub-onderka/php-parallel-lint": "^0.9",

 ...
 },
}

metadata for consumers

 "name": "grasmash/my-new-project",
 "description": "My new project.",

misc

{
 "minimum-stability": "dev",
 "prefer-stable": true
}

composer config prefer-stable true

Lots more!

● repositories

● config

● autoload

● autoload-dev

● bin

● extra

Check out website @ https://getcomposer.org/doc/04-schema.md.

Version best practices.

Versions matter.

For each dependency, we typically want
the latest version that won’t break our site.

Version promiscuity

If we just get the latest version of everything,
an upstream change will break something in our site.

Version lock

If we just stick to the exact versions we use now, we get no
new features or bug fixes.

How do we find a
balance?

Between the two... Version promiscuity Version lock

Version constraints.

Version constraint

{

 "require": {
 "monolog/monolog": "^1.23.0",
 },

}

Version constraint

{

 "require": {
 "monolog/monolog": "^1.23.0",
 },

}

Semantic Versioning

1
major

2
minor

3
patch

1
major

2
minor

3
patch

Bug Fixes

1
major

2
minor

3
patch

Bug FixesNew
Features

1
major

2
minor

3
patch

Bug FixesNew
Features

API / BC
Breaks

Version constraint best
practices

Version constraint

{

 "require": {
 "monolog/monolog": "^1.23.0",
 },

}

Version constraint operators.

caret, ^
^1.2.3 is equivalent to >=1.2.3,<2.0.0.

Downloads latest minor or patch version above specified version. Allows last 2 digits to go up.

Preferred!

tilde, ~
~1.2.3 is equivalent to >=1.2.3 <1.3.0.

Specifies a minimum version, but allows the last digit specified to go up.

range, >= x, <=
>=1.0
>=1.0,<=1.5
<=1.5

Specify a range of valid versions and combine multiple ranges with AND and OR operands.

asterisk, *
1.0.* is equivalent to >=1.0,<1.1.

Specify a pattern with a * wildcard.

exact version
1.0.0 will download exactly 1.0.0.

git branch
dev-master uses the master branch.

Using the prefix dev- followed by a git branch name like master will checkout that branch.

more
https://getcomposer.org/doc/articles/versions.md

Use the caret as your default.

{
 "require": {
 "monolog/monolog": “2.0”
 }
}

Image from “Composer the right way,” Rafael Dohms

{
 "require": {
 "monolog/monolog": “2.0”
 }
}

There is no monolog/monolog 2.0.

Image from “Composer the right way,” Rafael Dohms

{
 "require": {
 "monolog/monolog": “2.0”
 “^1.0”
 }
}

Image from “Composer the right way,” Rafael Dohms

{
 "require": {
 "monolog/monolog": “2.0”
 “^1.0”
 }
}

Take 1.23.0, on the house.

Image from “Composer the right way,” Rafael Dohms

composer.lock

Records which specific versions
were actually installed.

Image from “Composer the right way,” Rafael Dohms

{
 "require": {
 "monolog/monolog": “^1.0”
 }
}

Image from “Composer the right way,” Rafael Dohms

{
 "require": {
 "monolog/monolog": “^1.0”
 }
}

Image from “Composer the right way,” Rafael Dohms

{
 "require": {
 "monolog/monolog": “^1.0”
 }
}

Take 1.23.0, on the house.

Image from “Composer the right way,” Rafael Dohms

{
 "require": {
 "monolog/monolog": “^1.0”
 }
}

Take 1.23.0, on the house.

Image from “Composer the right way,” Rafael Dohms

{
 "require": {
 "monolog/monolog": “^1.0”
 }
}

Take 1.23.0, on the house.

Image from “Composer the right way,” Rafael Dohms

{
 "require": {
 "monolog/monolog": “^1.0”
 }
}

Take 1.23.0, on the house.

"packages": [
 {
 "name": "monolog/monolog",
 "version": "1.23.0",
 }
]

Image from “Composer the right way,” Rafael Dohms

{
 "require": {
 "monolog/monolog": "^1.0"
 }
}

Take 1.23.0, on the house.

"packages": [
 {
 "name": "monolog/monolog",
 "version": "1.23.0",
 }
]

The existence of
composer.lock

Fundamentally changes the behavior of composer install.

Grok this.

If composer.lock DOES NOT exist

composer install will:

● Discover all available dependency versions

● Determine which versions of packages should be installed.

● Create composer.lock

● Install the exact dependencies defined in composer.lock.

If composer.lock DOES exist

composer install will:

● Discover all available dependency versions

● Determine which versions of packages should be installed.

● Create composer.lock

● Install the exact dependencies defined in composer.lock.

Once you’re “locked in”

composer update will:

● Discover all available dependency versions

● Determine which versions of packages should be installed.

● Create update composer.lock

● Install the exact dependencies defined in composer.lock.

To commit or
not to commit?

Commit composer.lock.
But not vendor.

Commit composer.lock, not vendor.

Composer has indicated that this is the best practice because it avoids the following problems:

● Large VCS repository size and diffs when you update code.

● Duplication of the history of all your dependencies in your own VCS.

● Adding dependencies installed via git to a git repo will show them as submodules.

https://getcomposer.org/doc/faqs/should-i-commit-the-dependencies-in-my-vendor-directory.md

If you commit
composer.lock
and not vendor

Everyone gets the exact same
dependencies.

But your repo is much lighter, and
you avoid git submodule hell.

$ git clone [something] my-new-project
$ cd my-new-project

Populate vendor.
$ composer install

How do I get vendor on prod?

This assumes you have scripted deployments

Like, a build server or CI server that can:

● Run composer install for you.

● Commit and push vendor to prod.

We’re going to get into this later in advanced topics.

Don’t worry,
you can still commit vendor.

Easy, documented alternative.

https://getcomposer.org/doc/faqs/should-i-commit-the-dependencies-in-my-vendor-directory.md

Recap.

What did we learn?

Composer concepts:

● dependency management

● composer files/dirs
○ composer.json
○ composer.lock
○ vendor

■ bin

● packagist

● versions & constraints

● what to commit

Composer commands:

● init

● require

● install

● update

That was vanilla Composer.

Drupal complicates things.

Drupal considerations

● Drupal modules aren’t on Packagist

● Drupal doesn’t use Semantic Versioning. E.g., 8.x-2.0.

● Drupal doesn’t install modules, themes, etc in vendor.

Drupal core doesn’t fully support Composer out-of-the-box, hence the Composer Initiative.

But there are tools that address these issues.

Composer template for
Drupal projects

https://github.com/drupal-composer/drupal-project

https://github.com/drupal-composer/drupal-project

Use it as a
template for a new
project.

$ composer create-project
 drupal-composer/drupal-project:8.x-dev
 some-dir
 --stability dev
 --no-interaction

Inherit default composer.json,
preconfigured.

Preconfigured with what?

Drupal.org as a package source

"repositories": [

 {

 "type": "composer",

 "url": "https://packages.drupal.org/8 "

 }

],

https://packages.drupal.org/8

Packagist

Packagist

Drupal.org

Correct project install locations

"require": {

 "composer/installers": "^1.2"

},

"extra": {

 "installer-paths": {

 "web/core": ["type:drupal-core"],

 "web/libraries/{$name}": ["type:drupal-library"],

 "web/modules/contrib/{$name}": ["type:drupal-module"],

 "web/profiles/contrib/{$name}": ["type:drupal-profile"],

 "web/themes/contrib/{$name}": ["type:drupal-theme"],

 "drush/contrib/{$name}": ["type:drupal-drush"]

 }

}

● composer.json

● composer.lock

● vendor

● web
○ core
○ libraries
○ modules/contrib
○ profiles/contrib
○ themes/contrib
○ drush/contrib

Required dependencies, like Drupal

"require": {

 "drupal/core": "~8.5.1"

},

● composer.json

● composer.lock

● vendor

● web
○ core
○ libraries
○ modules/contrib
○ profiles/contrib
○ themes/contrib
○ drush/contrib

Required dependencies, like Drupal

"require": {

 "drupal/core": "~8.5.1"

},

● composer.json

● composer.lock

● vendor

● web
○ core
○ libraries
○ modules/contrib
○ profiles/contrib
○ themes/contrib
○ drush/contrib

Drupal scaffold

"require": {

 "drupal-composer/drupal-scaffold": "^2.2"

},

● composer.json

● composer.lock

● vendor

● web
○ .htaccess
○ core
○ index.php
○ libraries
○ modules/contrib
○ profiles/contrib
○ robots.txt
○ themes/contrib
○ drush/contrib

A prepopulated .gitignore

web/core

web/libraries

web/modules/contrib

web/profiles/contrib

web/themes/contrib

web/drush/contrib

vendor

Patches

"require": {

 "cweagans/composer-patches": "^1.6"

 },

 "extra": {

 "patches": {

 "drupal/core": {

 "Clear Twig caches on deploys":

"https://www.drupal.org/files/issues/2752961-130.patch"

 }

 }

 }

}

Drupal community tools

 "require": {

 "drupal/console": "^1.0.2",

 "drush/drush": "^9.0.0"

 },

Lots more.

Common Drupal tasks
with Composer

Installing a module

Will be added to
web/modules/contrib thanks to
composer/installers config.

$ composer require drupal/token

downloaded
drupal/token 8.1.1.

But Drupal doesn’t use
semver?

8.x-1.1

8.x-1.1

8.x-1.1.0

8.x-1.1 => 1.1.0

Drupal project versions

Drupal.org format Translated semver format

{core.x}-{major}.{minor}-{stability} {major}.{minor}.0-{stability}

8.x-3.4 3.4.0

8.x-2.10-rc2 2.10.0-rc2

8.x-1.0-alpha5 1.0.0-alpha5

7.x-1.x-dev 1.x-dev

Updating core

Updates drupal core only.

$ composer update drupal/core

Updating core

Updates drupal core and
all the packages that it requires.

$ composer update drupal/core
 --with-all-dependencies

Updating modules

Updates the token module and
all the packages that it requires.

$ composer update drupal/token
 --with-all-dependencies

Updating all the
things

Updates everything (all modules,
themes, core, and the packages
they depend on) within bounds of
version constraints.

$ composer update

Now you try!

Hands on tasks

● Install Composer

● Try Composer without Drupal
○ Create project
○ Require dependency
○ Implement
○ Test

● Try with drupal-project
○ Create project
○ require module
○ Require something from packagist

System Requirements

PHP 5.3.2+

For today’s workshop, please use an OSX or Linux OS.

Windows users, please consider using Drupal VM.

bit.ly/2qcYQ7w
grasmash.github.io/drupal-composer-training

For hands-on guide.

We will be here to answer questions and assist.

30 minutes.

Advanced topics.

Deploying to hosting.

Let’s generate a build
artifact.

A what?

Things you need for

development
process

Things you need for

production
website

!=

<>

Development Artifact

#navbar {
 width: 80%;
 border: solid red 1px;
 float: left;
 padding: 5px;

 ul {
 list-style-type: none;
 }
 li {
 float: right;
 a {
 font-weight: bold;
 color: red;
 }
 }
}

Development (SASS)

#navbar {
 width: 80%;
 border: solid red 1px;
 float: left;
 padding: 5px;
}

#navbar ul {
 list-style-type: none;
}

#navbar ul li {
 float: right;
}

#navbar ul li a {
 font-weight: bold;
 color: red;
}

Artifact (CSS)

.git/

.gitignore

.idea/

.travis.yml

.vagrant/
README.md
Vagrantfile
composer.json
composer.lock
config/
drush/custom
patches/
scripts/
tests/
web/modules/custom
web/themes/custom

Development Artifact

.git/

.gitignore

.idea/

.travis.yml

.vagrant/
README.md
Vagrantfile
composer.json
composer.lock
config/
drush/custom
patches/
scripts/
tests/
web/modules/custom
web/themes/custom

Development
.git/
.gitignore
composer.json
composer.lock
config/
drush/
scripts/
web/modules/custom
web/themes/custom

Artifact

.git/

.gitignore

.idea/

.travis.yml

.vagrant/
README.md
Vagrantfile
composer.json
composer.lock
config/
drush/custom
patches/
scripts/
tests/
web/modules/custom
web/themes/custom

Development
.git/
.gitignore
composer.json
composer.lock
config/
drush/custom
drush/contrib
scripts/
web/core
web/libraries
web/modules/contrib
web/modules/custom
web/modules/contrib
web/themes/custom
vendor/

Artifact

How do we make an artifact?

With a script
That turns the source code in your git repo’s branch into the artifact.

This is typically run by a build server or a CI server. But you can run it locally too.

Simple example

Create a build branch

$ git checkout -b master-build

create a dedicated branch
for build artifacts

Install production dependencies

$ composer install --no-dev --optimize-autoloader --prefer-dist

exclude require-dev
dependencies

Install production dependencies

$ composer install --no-dev --optimize-autoloader --prefer-dist

Improve autoloading performance. Up
to 37% PHP performance boost!

Install production dependencies

$ composer install --no-dev --optimize-autoloader --prefer-dist

avoid cloning .git repos to vendor

Remove any git submodules

$ find 'vendor' -type d | grep '\.git' | xargs rm -rf
$ find 'web' -type d | grep '\.git' | xargs rm -rf

Force add .gitignored dirs with vendor files

$ git add -f 'web/core’
$ git add -f 'web/modules/contrib’
$ git add -f 'web/themes/contrib’
$ git add -f 'web/profiles/contrib’
$ git add -f 'web/libraries’
$ git add -f ‘vendor’

$ git commit -m "Prepping for 1.0.0 release."
$ git push origin master-build

Commit and push upstream

Troubleshooting Composer

Dependency resolution is
complicated

Common issues

● Your platform (PHP version) is incompatible with your requirements

● Your application requires two packages that are incompatible with each other

● Your application requires a non-existent/invalid version of a package

● You execute a command that has too narrow a scope

Common fixes

● Change your system's version of PHP, or set a minimum compatibility level

● Change the version constraint for one or more of your requirements

● Change the command that you're running so that more packages can be updated at once

Common issues

● Your platform (PHP version) is incompatible with your requirements

● Your application requires two packages that are incompatible with each other

● Your application requires a non-existent/invalid version of a package

● You execute a command that has too narrow a scope

Set PHP version

 "config": {
 "platform": {
 "php": " 5.6"
 }
 },

Incompatible package versions

Your composer.json requires two packages that are incompatible with each other.

"require": {
 "phpunit/phpunit": "^7.0.1",
 "phpunit/php-timer": "~1.0"
 }

The error output is confusing.
Even for us.

Common fixes

● Change your system's version of PHP

● Change the version constraint for one or more of your requirements

● Change the command that you're running so that more packages can be updated at once

Package versions

"require": {
 "phpunit/phpunit": "^7.0.1",
 "phpunit/php-timer": " ^2.0"
 }

Common fixes

● Change your system's version of PHP

● Change the version constraint for one or more of your requirements

● Change the command that you're running so that more packages can be updated at once

Update granularity

● composer update [packages]

● composer update [packages] --with-all-dependencies

● composer update

Thank you!

Sprints are on Friday!

Rate us.
We want feedback, and we want to be invited back.

