

Drupal.org track

Issue Workspaces:
A better way to collaborate in Drupal.org issue queues

Ryan Aslett, Tatiana Ugriumova

Drupal.org issue queues

★ Complex workflow with many steps

★ Trivial changes require complex workflow

★ Difficult for Learners

★ No visibility between issues

★ Patch Review can be challenging

★ Stale Patches

Limitations of the current issue queues

What would better tools
look like?

★ Uses git, instead of patches to submit, review, and accept

work, i.e. “Pull requests” + “Forks”

★ Detects code conflicts and provides immediate notification

★ Integrates code review functionality

★ Allows inline editing for smaller fixes

A better issue queue

★ Minimize disruption

★ Preserve collaboration

★ Keep Drupal.org home of the community

★ Limited Resources

Our constraints:

What are the options?

● Do Nothing

● Externally Hosted Service

● Self Hosted Software

● Modernize Drupal.org’s Issue queues

Keep our tools as they are.

Option 1: Do nothing

Option 2: Move to a hosted service

● Code changes on GitHub are pull requests.
● Both pull requests and issues have comments.
● If someone else wants to work on the same

code, they fork a pull request.
● When you fork a pull request, you fork a

conversation. It is now in multiple places.

Fragmented Social Coding
GitHub’s Data Model

● Code changes on Drupal.org are patches.
● Patches live in comments on issues
● If someone else wants to work on the same code,

they create a new patch.
● Conversation happens in one place.

Collaborative Social Coding
Drupal.org’s Data Model

Hosted Service
Wins and Fails

Option 3: Move to self-hosted service

Self Hosted Software
Wins and Fails

Option 4: Modernize The Issue Queue

Option 4: Modernize Drupal.org Issue Queues

● Similar to Phase 3 of the “Great Git
Migration”

● Add new features to existing Issue Queues &
git daemon

● Minimal disruption
● Preserves collaboration
● Keeps Drupal.org home of the community
● Achievable given the resources available

Issue workspaces

Issue Workspaces

● One namespace per issue
● A per-user, per-issue protected branch in the

namespace that only that user can push to.
● A branch pointer to the “Latest” so users can easily

pull in the most recent change into their own branch.
● Any number of shared branches for those times

when advanced users need to hash out several
concepts.

Git Based Workflow

● Contributor clones workspace
● Make changes, commit, and push
● Drupal.org issue queue creates comments and

notifies issue followers
● User updates issue with additional info (optional)

HEAD

Real life example from https://www.drupal.org/node/1740492

dawehner creates issue workspace, clones it, and pushes a
change to his branch. (1)

xjm sees some text cleanup, and fixes in the inline editor (5)

dawehner pulls xjms changes, and adds commits, (18,19,22)

dawehner merges HEAD back onto his workspace master, and
adds more changes (28/29)

dawehner merges damienklops changes and makes another fix
(37)
damienklop makes some more fixes
(35,36)

damienklop makes a personal branch based off of latest, merges head (34)

dasjo posts another commit (42)

dasjo creates a branch based on the latest (dawehners) (39)

jhodgdon fixes documentation via inline edit. other questions asked in
the issue. (*)

dawehner doesnt need dasjo’s changes and keeps working on the issue(68-
74

dawehner incorporates jhodgdons suggestions, meanwhile pulling in
the project HEAD. (74-128)

alexpott takes
dawehner’s final
commit and does
a
git merge --
squash

adding one
commit back to
the HEAD of
project
development

https://www.drupal.org/node/1740492

HEAD

dawehner creates issue
workspace, adds a commit

Branches
jhodgdon
dasjo
damianklop
xjm
dawehner

● Upload/download/apply patchs
● Git changes create patches
● Patch submission creates commits behind the

scenes

Minimize Disruption

Patch Based Workflow

● Edit in progress work
● Creates a commit in the workspace after

submission
● Not for editing everything (yet)

Simplifying the complex
Inline Editing

● Use existing tools
● Intra-change diffs
● Reviews are more granular

Seeing Change
Code Review

● From the Issue queues for maintainers
● From git with a push

Moving the Drop
Merging Changes Upstream

● Reveals issues conflicts using git
● Reduces need for “disruptive patch windows”
● Commits that break other changes notify

immediately
● Needs Review is meaningful.

Adding insight
Velocity Acceleration

● Collect Feedback
https://www.drupal.org/node/2488266

● Implement Backend Changes
● Design and Implement UI elements for Drupal.org
● Beta Test
● Launch

Making it happen
Next Steps

https://www.drupal.org/node/2488266
https://www.drupal.org/node/2488266

Thank you

Melissa Anderson
 eliza411

Sam Boyer
sdboyer

Marco Villegas
marvil07

Michael Halstead
halstead

Howard Tyson
tizzo

Derek Wright
dww

Herman van Rink
helmo

Christophe Van Gysel
cvangysel

Jakob Petsovits
jpetso

Ryan Aslett
Drupal.org: Mixologic
IRC: Mixologic
Twitter: @ryanaslett
Email: ryan@asociation.drupal.org

Tatiana Ugriumova
Drupal.org: tvn
IRC: tvn
Twitter: @tvnweb

WHAT DID YOU THINK?
EVAULATE THIS SESSION - LOSANGELES2015.DRUPAL.ORG/SCHEDULE

THANK YOU!

http://losangeles2015.drupal.org/schedule

Backup notes
How it works: deeper backend

This is what the .git/refs directory would look like. The namespaces make it so that if you check out drupal
core, the only branches and tags that you see are the default ones - the namespace branches are not visible.

refs

├── heads

│ └── 8.0.x

├── namespaces

│ └── issue_1223344

│ └── refs

│ └── heads

│ ├── latest

│ ├── sun

│ ├── webchick

│ └── shared_1223344_space

└── tags

Access to the issue namespaces would be simple to the end user:

git clone Mixologic@git.drupal.org:
project/drupal/issues/123456.git

Becomes, serverside:

git --namespace=issue_123456 clone Mixologic@git.drupal.org:
project/drupal.git

Access to the issue namespaces would be simple to the end user:

git clone Mixologic@git.drupal.org:
project/drupal/issues/123456.git

Becomes, serverside:

git --namespace=issue_123456 clone Mixologic@git.drupal.org:
project/drupal.git

If a contributor (and especially a maintainer) wants to
have multiple issues associated with one checkout of
a project (e.g. drupal core) They can add the
workspace as a remote instead of cloning the whole
workspace. e.g.
git remote add issue_123456 Mixologic@git.drupal.org:
project/drupal/issues/123456.git

There will be copy to clipboard buttons for both “add
as remote” and “clone” on the issue nodes.
This will allow cross issue cherry picking/merging as
well as minimal disk space on their local installations.

Get involved with Sprints to
contribute to the project and
the community
First-Time Sprinter Workshop
9:00am-12:00pm | 406AB

Mentored Core Sprint
9:00am-6:00pm | 403AB

General Sprints
9:00am-6:00pm | 408AB

Follow @drupalmentoring

Sprint: Friday

https://www.flickr.com/photos/amazeelabs/9965814443/in/faves-38914559@N03/

