
Tag and Release
Monitoring Increasingly Distributed Applications

dkuebric / dan@appneta.com

Outline
● What is distributed tracing?

● Who’s doing it, and how?

● Challenges, and future directions?

Thrift Shop
● Frontend web app: PHP

● Text search: lucene-based, via thrift

● Pricing service: erlang, via thrift

● Spelling corrector: python bindings around xapian, via thrift

● Content provider search: ruby, via thrift

● ...

cache
(memcached)

search
(lucene)

cache
(memcached)

app1

Apache
PHP

app1

Apache
PHP

fw1

perlbal

cache
(memcached)

fw2

perlbal

...

search
(lucene)

db2

Mysql

search
(lucene)

app server

Apache
PHP

search
(lucene)

search
(lucene)

API search
(ruby)

pricing
(elang)

spelling
(python)

APIs

APIs

db1

Mysql

Q: Why do you remember this so well?

Q: Why do you remember this so well?

A: ops

“Close enough” architectural diagram

https://www.flickr.com/photos/clonedmilkmen/3604999084

Things we had
● Ganglia
● Nagios
● Thrift

○ Per-service status page
○ Service status page

● Logs

Sample performance / debug workflow
1. Are any services outright down?
2. Hit refresh N times -- how many times were problematic?
3. Systematically tail the logs of every service on every machine
4. Check database processlist
5. SSH in and poke around
6. Deploy new release with debug logging
7. Google

X-Trace

Example: Drupal request handling

Web server

Application

Web server

Application

Apache

PHP

SQLmemcached

APIs

Drupal TraceView project

D6/7: https://www.drupal.org/project/traceview
D8: https://www.drupal.org/node/2113637

https://www.drupal.org/project/traceview
https://www.drupal.org/node/2113637

Drupal 8 request handling

https://helloapp.tv.appneta.com/traces/view/FECA51A4134E765EBB04717C1D07F64352DE49E0

https://helloapp.tv.appneta.com/traces/view/FECA51A4134E765EBB04717C1D07F64352DE49E0
https://helloapp.tv.appneta.com/traces/view/FECA51A4134E765EBB04717C1D07F64352DE49E0

Example Drupal 7 request

Example Drupal 7 request

Example Drupal 7 request

Example Drupal 7 request

Example Drupal 7 request

Example Drupal 7 request

Example Drupal 7 request

Example Drupal 7 request

Example Drupal 7 request

Example Drupal 7 request

Example Drupal 7 request

Example Drupal 7 request

Example Drupal request: more distributed

Web server

Application

Web server

Application

Apache

PHP

Database

Service

Cache

APIsSolr

Example Drupal request

Example Drupal request

Great minds...

● Distributed tracing based on ID propagation
○ Google Dapper (200x? Published paper 2010)
○ Twitter Zipkin (Open-sourced 2012, 3rd party PHP support)
○ Etsy Cross Stitch (2014ish)

○ OpenTracing (2016ish)

● Commercial APM -- semi-distributed tracing
○ New Relic
○ AppDynamics

Challenges: Instrumentation Points

function interesting_method(...) {

 log_entry(...);

 _do_stuff();

 log_exit(...);

}

Challenges: Trace ID Propagation

function interesting_method(trace_id,...) {

 log_entry(trace_id, ...);

 _do_stuff(?);

 log_exit(trace_id, ...);

}

Optional in PHP! Could use globals
due to single-request handling
model.

Challenges: Trace ID Propagation

function http_rpc_call(...) {

 log_entry(...);

 $opt = array(modified_headers);

 drupal_http_request($url, $opt);

 log_exit(...);

}

Challenges: Extracting Value

Rich data set
● Distributed tracing “only”

○ Follow request flow through application
○ Understand end-to-end latency
○ Associate backend load with frontend requests

○ Provide errors with distributed context

● While you’re in there
○ Latency of queries, RPC calls, in each tier
○ Slow code
○ Cache hit/miss ratio
○ Errors and exceptions
○ Custom tagging/categorization of data
○ ...

How does it actually work?
● PHP extension

○ Hook into core methods

● TraceView Module
○ Hook into key events -- take timing and attributes

● Drupal 8 module, for example:
○ Event Dispatcher -- log timing of different kernel actions, etc
○ Event Subscriber -- figure out if user is anon/authenticated/admin
○ Service Provider -- alter base template class

■ Wrapper for Twig -- get timing and info on templates

How does it actually work?
class TraceViewContainerAwareEventDispatcher extends ContainerAwareEventDispatcher
{
 public function dispatch($eventName, Event $event = null)
 {
 // On an untraced request, bail out early.
 if (!oboe_is_tracing()) {
 return parent::dispatch($eventName, $event);
 }

…
 // Figure out what event we’re dispatching
 if ($is_request) {
 oboe_log(($event->getRequestType() === HttpKernelInterface::MASTER_REQUEST) ? 'HttpKernel.
master_request' : 'HttpKernel.sub_request', "entry", array('Event' => get_class($event)), TRUE);
 oboe_log(NULL,"profile_entry", array('Event' => get_class($event), 'ProfileName' => $eventName),
TRUE);
 } elseif ($is_finish_request) {
 ...

 // Try to dispatch the event as normal.
 try {
 $ret = parent::dispatch($eventName, $event);
 // Catch any exceptions that occur during dispatch.
 } catch (\Exception $e) {
 ...
 }

 // And mark the end timing as well

Aggregate performance

Outliers, trends

Topology mapping

Thanks!
twitter.com/dkuebric

appneta.com

dkuebric / dan@appneta.com

