

Entity storage,
the Drupal 8 way

Francesco Placella

Coding and development - http://bit.ly/d8-esa

About me
■ Francesco Placella, plach on drupal.org, from Venice, Italy
■ Senior Performance Engineer at Tag1 Consulting
■ Working with Drupal since 2006
■ Maintainer of the core Language system
■ Maintainer of the core Language and Content Translation modules
■ Unofficial maintainer of the core Entity storage, Entity form and

Entity translation subsystems
■ http://twitter.com/plach__

Outline
■ Drupal 7 vs Drupal 8
■ Dealing with entity data
■ Entity type and field definitions
■ Storage schema
■ Core SQL storage
■ The fun stuff

Drupal 7 vs Drupal 8

Drupal 7
■ Field swappable storage
■ Field data can live in NoSQL storage, remote storage
■ Every field is configured independently
■ Possibly problematic for entity querying
■ Supports only Fields, properties are always stored in

the SQL database

Drupal 8
■ Switched from field-based to entity-based storage
■ Storage is still swappable
■ Supports also base fields (e.g. the node type)
■ Entity querying works nicely
■ Fields can no longer be shared among entity types
→ you can have fields with the same name in different

entity types

SQL is not dead, it just smells funny

Dealing with entity field data
■ Swappable backends imply storage-agnostic code
■ Contrib modules should not assume a SQL storage
→ either leverage the Entity CRUD API
→ or provide their own APIs (e.g. Views)

■ Custom modules can assume a specific storage
→ should NOT bypass the Entity API
→ use SQL-specific APIs if needed

The Entity Query API
■ To query entity field data we have the Entity Query API
→ the successor of the D7 Entity Field Query system
→ improved syntax → DBTNG
→ leverages swappable query backends

■ Supports expressing relationship between entity types
→ the SQL backend translates those in JOINs

■ Supports expressing aggregation queries (!)
■ Very powerful but obviously not as expressive as SQL

Legal SQL usages
■ Always retrieve identifiers, also via custom SQL queries
→ do not retrieve partial data

■ Always load an entity before accessing field data
■ Always save an entity to write field data to the storage
■ Bypassing the Entity API means you are on your own
→ unexpected behaviors, cache invalidation issues, …

■ At least encapsulate SQL-specific code in a swappable service

It’s all a matter of definitions

Entity type definition
■ An entity type definition (a plugin definition) describes

the entity type to the system
■ Content entities rely on field data
■ Configuration entities use plain properties and are

stored in configuration
■ A definition has several properties allowing to

customize the entity type’s behavior

Key definition properties
■ The handlers section defines, among the rest:

■ the storage handler that performs CRUD entity
operations

■ the storage_schema that manages the entity storage
schema when needed (!)

■ The revisionable and translatable properties may have
an impact on how data is stored → schema

Entity Field API
■ The D8 Entity Field API generalizes the D7 Field API
■ Every piece of data attached to an entity is a field
■ Base fields are shared among all available bundles 

(e.g. nid)

■ Bundle fields may be attached only to certain bundles
(e.g. field_image)

■ Both are handled the same (e.g. Views or REST support)

Field definitions
■ Base field definitions typically live in code
→ defined via hook_entity_base_field_info()

■ Bundle field definitions typically live in configuration
→ defined via hook_entity_bundle_field_info()

→ the Field module allows to create bundle field
definitions based on its configuration

→ can be defined in code too

Field storage definitions
■ Field storage definitions collect the information

required to store a field (surprise!)
■ Base field definitions are usually instances of the
BaseFieldDefinition class

→ both a field and a field storage definition
■ Bundle field definitions share a field storage definition
→ can exist even when no bundle field has been defined

The Entity Storage Schema

Schema generation
■ The storage handler is responsible for managing its own

schema, if used
→ schema is automatically generated based on entity

type and field definition
■ Schema is created on module installation and dropped

on uninstallation

Core SQL storage
■ Generates tables for base and bundle fields
→ single base fields are stored in shared tables
→ bundle fields and multiple base fields are stored in

dedicated tables
■ Supports four different shared table layouts depending on
→ entity type translatability
→ entity type revisionability

Shared table layouts
■ Simple entity types use
→ the base table to store base field data

■ Translatable entity types use
→ the base table to store entity keys
→ the data table to store translated base field data

■ Revisionable entity types use
→ the base table to store base field data
→ the revision table to store data for revisionable base fields

Shared table layouts
■ Translatable and revisionable entity types use
→ the base table to store entity keys
→ the data table to store translated base field data
→ the revision table to store entity key revisions and

revision metadata
→ the revision data table to stores translated base field

revision data
■ The storage schema supports switching between layouts

The Table Mapping API
■ How to query shared tables?
→ via the Entity Query API (storage agnostic)
→ via the Table Mapping API (SQL-specific)

■ The Table Mapping API allows to write SQL queries in a layout-
agnostic fashion
→ It is used by Views to implement its SQL backend
→ Currently core entity type support only the

DefaultTableMapping → assumes one of the previous layouts

Entity Updates
■ Entity Updates leverage a dedicated API
■ The Entity Definition Update Manager is able to detect any

mismatch between the definitions and the actual schema
→ allows to apply individual updates
→ trigger events when an update is applied
→ refuses to proceed if the change requires a data

migration

Entity Updates
■ Typically Entity Schema updates are applied via update

functions
■ A Drush command is available (drush entup) to apply

any pending entity update
→ this should be used only during development
→ should NOT be used to get rid of the status report

error in production

The Right Way

Define …
■ Define any field needed to implement the business logic
■ Field data will be loaded/stored automatically
■ Automatic module integration via the Entity Field API
→ revisionability, translatability
→ Views, REST, Rules, …

■ Field definitions can opt out by marking themselves as having
custom storage (not recommended)
→ mainly used for computed fields

… and code!
■ Core entity types provide interfaces making business

logic explicit, e.g. NodeInterface::isSticky()

→ encapsulate the implementation
→ better integrated with IDEs
→ mark required data model

■ It’s a good practice to provide a wrapper for module-
provided fields

Shut up and show me some code

A simple tracker
■ Simple module (http://bit.ly/d8-esa-ex) to list:
→ users having created a published node
→ total amount of created nodes
→ title of most recently created node

■ Direct querying has poor performance → denormalize
→ add two fields to the user entity type
→ update their values on C(R)UD events

A simple tracker
■ Field definitions and installation
■ The entity wrapper
■ Service encapsulating business logic

→ on node creation → aggregate entity query

→ on node deletion → regular entity query

→ retrieve the user list → entity query relationship → display
■ Performant and fully portable!

Seriously?

What's Left?
■ Switching between shared table layouts is supported only by the API
→ https://www.drupal.org/node/2274017

■ Define custom indexes for the entity storage schema
→ https://www.drupal.org/node/2258347

■ When adding new fields an initial value may be needed
→ https://www.drupal.org/node/2346019

■ Base field purging
→ https://www.drupal.org/node/2282119

Sprint: Friday
■ Sprint with the Community on Friday
■ We have tasks for every skillset
■ Mentors are available for new contributors
■ An optional Friday morning workshop for

first-time sprinters will help you get set up
■ Follow @drupalmentoring

As you may have guessed…

Conclusions
■ Use the Entity Field API to define your data model and

code your business logic on top of it
→ leverage fields to store data, avoid custom storage!

■ Always retrieve identifiers and load entities to access
field data
→ the Entity Query API is very powerful, use it

whenever possible!

Useful links
■ Entity Storage API blog post
→ https://drupalwatchdog.com/blog/2015/3/entity-storage-drupal-8-way

■ Drupal 8 Entity API documentation
→ https://www.drupal.org/node/2143503

■ The Table Mapping API reference
→ https://api.drupal.org/api/drupal/core!lib!Drupal!Core!Entity!Sql!

TableMappingInterface.php/interface/TableMappingInterface/8
→ https://api.drupal.org/api/drupal/core!lib!Drupal!Core!Entity!Sql!

DefaultTableMapping.php/class/DefaultTableMapping/8

Question & Answers

