
DrupalCon Barcelona 2015

Preston So
September 22, 2015

¡  Preston So (@prestonso) has designed
websites since 2001 and built them in Drupal
since 2007. He is Development Manager of
Acquia Labs at Acquia and co-founder of the
Southern Colorado User Group.

 preston.so
 drupal.org/u/prestonso
 preston.so@acquia.com
 pso@post.harvard.edu

Why front-end ops?

Scaffolding and dependencies

Automation: Grunt and Gulp

Regressions and rendering

Tools and discussion

1	

2	

3	

4

5	

Why ops?

Why front-end ops?

Front-end workflow

1	

¡  Automation engenders consistency.

¡  Leverage iterative development.

¡  DevOps:
Product delivery
Quality testing
Release management

¡  We have many front-end tasks that would be
better served with automation.

¡  In the past, we only needed to worry about a
few HTML and CSS files, and perhaps a script or
two.

¡  Today, we have many new front-end
abstractions and frameworks that have their
own dependencies.

¡  Front-end ops (Alex Sexton) is a response to the
proliferation of front-end tools and frameworks,
as “more application logic is being deferred to
the client side.”

¡  The key difference between traditional front-
end development and front-end ops is the
emphasis on process.

¡  Sexton: There is now too much work in front-
end ops for FEDs to do everything on their own.

¡  Having a focus on operations yields a more
iterative workflow focused on improving
process.

¡  Chris Ruppel: Front-end ops is “how to
automate the process of breaking things.”

¡  Before, the traditional front-end workflow was
simple and had a single track.

¡  A little basic scaffolding (download Drupal)
¡  Add a few dependencies (jQuery)
¡  Edit, upload, voilà

¡  Today, we have too many points of potential
failure along the path that front-end code takes.

Scaffolding (perhaps many steps)
Download libraries and frameworks (and manage all
these dependencies)
Watch Sass/Compass, CoffeeScript, Haml
Lint JS/CSS for standards
Test suites and debugging tools

¡  Especially when we have very diverse needs:

Unit tests
Preprocessing
Minification and concatenation
Performance
Display testing
Builds and deployment

Haml (2013) Sass (2007) Less (2009)
	

HTML CSS
	

¡  More abstraction means more overhead.

¡  More team members means more potential for
unaligned code.

¡  More front-end code means more risk of error.

¡  More users means more drags on
performance.

¡  We need an easier way to scaffold, manage
dependencies, and automate tasks.

¡  We need an easier way to scaffold, manage
dependencies, and automate tasks.

¡  Introducing …

Yeoman (app scaffolding)
Bower (dependency management)
Grunt/Gulp (task automation)

¡  Addy Osmani: How does this new workflow help
us?

“Flexibility to customize your setup as much as you
desire.” (Yeoman generators, bower.js, gulpfile.js)

“Limit the time spent writing boilerplate.” (Yeoman)

“Improve your productivity and delight during
development.” (Bower, Grunt, Gulp)

¡  Yeoman explicitly recommends a workflow that
involves Bower and Grunt or Gulp.

¡  You can install Yeoman generators and write
your own, and generators exist for frameworks
such as Angular.js and Bootstrap.

¡  Yeoman can also scaffold portions of apps for
isolated testing or demonstration, especially for
Angular.js.

¡  Bower helps you find your dependencies and
updates them when you prefer.

¡  Bower provides one single command-line
interface to manage all versioned and
potentially obsolescent dependencies.

¡  Grunt and Gulp are task automators, which
given some configuration in a Gruntfile or
gulpfile.js, will run through selected piped tasks.

¡  The Grunt and Gulp communities are replete
with plugins that provide many useful
commands.

¡  Grunt and Gulp reduce the time for you to get
your code to a deliverable state.

¡  Sexton proposes a new front-end operations
engineer role that would oversee front-end ops
responsibilities and argues that further
specialization is imminent.

¡  I believe that the trend of front-end
development is toward diversification rather
than specialization: developers will increasingly
need to know more and more of the stack.

Bower

Yeoman

Scaffolding a Drupal theme

2	

¡  First, install Node.js at nodejs.org.

$ node –v
v4.0.0

¡  Check the version of npm, package manager.

$ node –v
v4.0.0
$ npm -v
3.3.3

¡  If need be, update npm.

$ node –v
v0.12.4
$ npm -v
3.3.3
$ npm install npm -g

¡  With npm, we can install what we need once.

$ npm install –g yo bower grunt-cli gulp

¡  Bower takes care of the grunt work in finding,
downloading, and tracking your dependencies.

¡  Bower leverages a manifest file, bower.json,
which contains a list of your packages.

¡  Install packages to bower_components/

An already registered package.
$ bower install jquery

GitHub shorthand or Git endpoint.
$ bower install drupal/drupal

A path.
$ bower install http://my.com/package.js

¡  Add to the manifest with bower init.

Save packages to the manifest.
$ bower init

Search Bower packages.
$ bower search

List saved dependencies in project.
$ bower list

¡  Now that our dependencies are sorted, let’s get
our basic scaffolding.

¡  For this session we will be generating a Drupal
theme in Yeoman, using this generator by Ian
Carrico:

github.com/frontend-united/
generator-drupal-theme

¡  Install a Yeoman generator.

$ npm install –g generator-drupal-theme

¡  Scaffold a Drupal theme with initial files (demo).

$ mkdir barcelona2015 && cd barcelona2015
$ yo drupal-theme

¡  package.json declares our dev dependencies.

{
 "name": ”barcelona2015",
 "version": "0.0.0",
 "dependencies": {},
 "devDependencies": {
 "gulp": "^3.6.0",
 "gulp-jshint": "^1.5.1",
 "jshint-stylish": "^0.1.5",

¡  … continued.

 "compass-options": "^0.1.1",
 "browser-sync": "^0.7.4",
 "gulp-shell": "^0.2.4"
 },
 "scripts": {
 "postinstall": "find node_modules/ -
name \"*.info\" -type f -delete"
 }
}

¡  We need a new directory with this package.json:

{
 "name": "generator-name",
 "version": "0.1.0”
 "description": "",
 "keywords": ["yeoman-generator"],
 "dependencies": {
 "yeoman-generator": "^0.17.3"
 }
}

¡  Writing Yeoman generators is beyond the
scope of this session, but Yeoman has an
exceptional authoring resource:

yeoman.io/authoring/

Grunt

Gulp

Automating a Drupal theme

3	

¡  There is no significant difference between
Grunt and Gulp to the front-end developer.

¡  Their syntaxes and goals are slightly different;
we’ll talk about both in this section.

gruntjs.com/plugins
gulpjs.com/plugins

¡  First, let’s install a Grunt plugin.

$ npm install grunt-contrib-uglify
 >> --save-dev

$ npm install gulp-uglify
 >> --save-dev

¡  With the --save-dev flag, Grunt and Gulp will
both automatically add the plugin to
package.json as a development dependency.

¡  Where Grunt and Gulp differ is in the files they
require in the project and in their focus: Grunt
is more configuration-focused, while Gulp is
more task execution-focused.

¡  Here’s the initial structure of our Gruntfile.js:

module.exports = function (grunt) {

 // Configure Grunt here.

};

¡  Let’s get Grunt to read our package.json.

module.exports = function (grunt) {
 // Configure Grunt here.
 grunt.initConfig({
 pkg: grunt.file.readJSON(
>> ‘package.json’),
 });

};

¡  We can also configure the plugin.

module.exports = function (grunt) {
 // Configure Grunt here.
 grunt.initConfig({
 uglify: {
 // Configure uglify here.
 }
 });
};

¡  Load the task and register the task with Grunt.

module.exports = function (grunt) {
 // Tell Grunt that plugin will be used.
 grunt.loadNpmTasks(‘grunt-contrib-
>> uglify’);
 // Provide Grunt a task to register.
 grunt.registerTask(‘default’,
>> [‘uglify’]);
};

¡  Within grunt.initConfig(), let’s configure.

uglify: {
 options: {
 // Plugin-specific configuration.
 },
 dist: {
 src: [‘src/**/*.js’],
 dest: ‘dist/<%= pkg.name %>.js’
 }
};

¡  Let’s run grunt!

// With our task registered …
grunt.registerTask(‘default’,
>> [‘uglify’]);
};

… we can run grunt.
$ grunt

¡  Let’s run grunt!

// With our task registered …
grunt.registerTask(‘concat-uglify’,
>> [‘concat’, ‘uglify’]);
};

… we can run grunt.
$ grunt concat-uglify

¡  grunt-responsive-images
Save multi-resolution images to a destination.

¡  grunt-contrib-imageoptim

Optimize images for web use.

¡  grunt-newer
Only execute tasks on modified files.

¡  grunt-uncss
Remove CSS not used across your project.

¡  grunt-uncss and gulp-uncss can also detect and
remove styles injected into the page
dynamically, leveraging PhantomJS.

¡  The syntax of gulpfile.js is slightly different.

var gulp = require(‘gulp’);

gulp.task(‘default’, function() {
 // Code for your task.
});

Run gulp.
$ gulp

¡  First, we invoke require() on plugins.

var gulp = require(‘gulp’);
var jshint = require(‘gulp-jshint’);
var compass = require(‘gulp-compass’);
var concat = require(‘gulp-concat’);
var uglify = require(‘gulp-uglify’);

¡  Then, we set paths.

var paths = {
 scripts: ‘js/**/*.js’,
 img: ‘img/**/*’
};

¡  Then, we configure and order tasks.

gulp.task(‘process-js’, function() {
 return gulp.src(paths.scripts)
 .pipe(concat(‘processed.js’))
 .pipe(gulp.dest(paths.js))
 .pipe(uglify())
 .pipe(gulp.dest(paths.js));
});

¡  Let’s run gulp!

$ gulp process-js

¡  It’s often useful to look at different codebases’
Gruntfile.js and gulpfile.js files to iterate on your
front-end workflow. What works for other
teams may not work for yours.

¡  In Grunt, tasks are preconfigured then
registered.

¡  In Gulp, tasks are configured as they register.

¡  We can use Gulp to track changes in our theme
files and automate what’s tedious so we can
focus on what’s important. (demo)

¡  Whenever package.json (or bower.json)
changes, run npm install or bower install to get
the most up-to-date dependencies.

Visual regressions

Testing rendering engines

Testing devices

4	

¡  CSS is usually fast-moving and prone to more
errors than other languages.

¡  Wraith leverages PhantomJS or SlimerJS to snap
screenshots as visual diffs between two
environments.

github.com/BBC-News/wraith

¡  Install Wraith and set up for capturing.

Install Wraith.
$ gem install wraith

Create template JS and config YAML.
$ wraith setup

¡  Install Wraith and set up for capturing.

Start Wraith and capture using configs.
$ wraith capture configs/config.yml

¡  Huxley (built by Facebook and Instagram, but
currently unsupported) helps you by
scrutinizing diffs in screenshots.

github.com/facebookarchive/huxley

¡  Huxley “watches you browse, takes screenshots,
[and] tells you when they change.”

¡  Huxley uses Huxleyfiles that allow you to
configure the URLs to be tested.

¡  Huxley generates .huxley files that are records
of your tests whose changes you can track.

¡  Hit Enter to take a screenshot, and q to quit.

Run Huxley.
$ huxley --record

¡  PhantomCSS automates visual regression
testing for “web apps, live style guides, and
responsive layouts.”

github.com/Huddle/PhantomCSS
tldr.huddle.com/blog/css-testing

¡  A faster front-end workflow means we need a
faster turnaround on tests.

¡  How can we test rendering engines more
quickly and without waiting for pageloads on
each browser?

¡  We can use headless instances of rendering
engines to render our pages without display.

¡  PhantomJS (Webkit) can be set to spit out visual
pages when asked. It’s particularly useful for
batch actions on web pages (screenshots,
viewport changes, etc.).

phantomjs.org

¡  SlimerJS is the equivalent for Gecko.

slimerjs.org

¡  CasperJS builds on top of PhantomJS or SlimerJS
to provide a great deal of interaction, including
form-filling, clicking links, logging, and scraping.

casperjs.org

¡  GhostLab allows you to conduct synchronized
testing on diverse types of devices.

vanamco.com/ghostlab

¡  Other device simulators are available, such as
Xcode’s iOS Simulator.

¡  Synchronize navigation across mobile and
desktop and all devices.

¡  Synchronize taps, clicks, scrolls, and other user
interactions.

Front-end and debugging tools

Chrome DevTools

Discussion

5	

¡  DevTools Remote Debugging allows for better
mobile and tablet testing.

¡  Conduct audits of CSS to determine which CSS
is unused—same story as grunt-uncss.

¡  DevTools Terminal gives you a shell in Chrome.

github.com/petethepig/devtools-terminal

¡  What is the future of front-end development
with the advent of front-end ops?

¡  How will development workflows change due to
front-end ops?

¡  What will front-end workflows look like 1 year
from now? 5 years from now?

¡  Intro to Front-End Ops (Chris Ruppel)
http://rupl.github.io/frontend-ops

¡  Front-End Ops (Alex Sexton)
http://www.smashingmagazine.com/2013/06/11/front-
end-ops/

¡  Automating Workflow (Addy Osmani)
https://speakerdeck.com/addyosmani/automating-
front-end-workflow

¡  Grunt for People Who Think Things Like Grunt
Are Weird and Hard (Chris Coyier)
http://24ways.org/2013/grunt-is-not-weird-and-hard/

¡  Visual Regression Testing
Amitai Burstein; 13:00-14:00; 117 (Acquia)

¡  Evaluate this session at:

barcelona2015.drupal.org/schedule

¡  Preston So (@prestonso) has designed
websites since 2001 and built them in Drupal
since 2007. He is Development Manager of
Acquia Labs at Acquia and co-founder of the
Southern Colorado User Group.

 preston.so
 drupal.org/u/prestonso
 preston.so@acquia.com
 pso@post.harvard.edu

