
How, When and Why
to Patch a Module

May 13, 2015

Wednesday, May 13, 15

Good Afternoon!
[Introduction and overview.]

What’s a Patch?

Wednesday, May 13, 15

When you are working with a code platform like Drupal, there may come a time when you
need to make a change to some code that you didn’t write, or don’t control.

Patches are how we do that. They are a universal standard in the software world - not just in
the web world, but video games, enterprise business applications, and operating systems all
use patches to make changes.

Patch File

Wednesday, May 13, 15

At their heart, patches are small files that contains a list of all the differences between the
existing code, and the code you want to run.

They are “applied” to the existing code, and make permanent changes *to* that code.

This is an example of a patch file. Let’s take a closer look...

Patch File

Wednesday, May 13, 15

The most important lines are the ones highlighted here.

The plus and minus signs here tell us these lines are changing. “Minus” is a line being
removed; “Plus” is a line being added.

On the right, you can see the actual difference that triggered the change.

When and Why?

Wednesday, May 13, 15

DON’T HACK CORE!!
Why Not?

• Forward compatibility

• Developer Friendliness

DON’T DO IT!

Wednesday, May 13, 15

In the Drupal Community, we don’t hack core! And we really shouldn’t hack contrib, either.

There are two main reasons:

1 - Forward compatibility: If new features or changes, or most importantly, security releases,
are made to the module, you can’t take advantage of them without losing your changes.

2 - Developer friendliness: If your changes introduce a bug down the road, other developers
will not look in that module, because they will assume it hasn’t been changed. This will cost
them time and frustration.

DON’T DO IT!

Hacking... Nicely.
Sometimes, though... you need to.

Patches are a way to modify core or

contrib code in a way that’s

maintainable, future-friendly, and

reproducible.

And it saves kittens.

Wednesday, May 13, 15

Sometimes, though... you just need to.

That’s where patches come in. They are a way to modify core or contrib code in a way that’s
maintainable, future friendly, and reproducible.

And it saves kittens!

What’s the
Difference?

Wednesday, May 13, 15

So, what is the difference between a patch and a hack?

Method.

When I say I “hack” a module, I mean that I am changing the module code directly, putting it
straight into my site repo or on my site server, and running it. Changes like this are usually
pretty invisible to other developers.

When I say I “patch” a module, it means that the changes that I’ve made are in a separate text
file, which is applied to the module when the site is built. These changes are also easily
accessed and reviewed by other developers.

This tiny methodology difference means a great deal in actual practice. A module that’s been
hacked is very difficult to use in the long term. Changes made to it are often not recorded
anywhere (or anywhere anyone would look), and if the module is replaced, by say a new or
updated version, then those changes are lost forever.

When should I patch?

• You’ve found a module that does most of what
you need... but not quite everything.

• You’ve found a bug in the module.

• You need to integrate custom functionality into
the module, but it doesn’t have the right API
functions.

• You need a change right now and the module
maintainer isn’t responding.

Wednesday, May 13, 15

When should I not?

• The module provides hooks or alter functions
that will allow you to do what you need.

• The module only does a little of what you need,
and you probably can build a custom module
for the same effort.

• The dev version of the module has what you
need, or there’s already a patch in the issue
queue.

Wednesday, May 13, 15

That last point leads us to the next section...

How?

Wednesday, May 13, 15

Work Smarter

Check the Issue Queue

and the Dev Version of the

module!

Wednesday, May 13, 15

Step One: Work Smarter!

It’s quite possible that someone has already done what you need to do. Check first, save
yourself some work!

If you are not already using the dev version of the module, try that. If that doesn’t work...

These links lead to the issue queue, where you can find other people’s bug reports, feature
requests, support requests, and - best of all - patches.

If you find a patch that looks promising, you can skip to the “Apply a Patch” section towards
the end of this presentation.

Edit and patch

Wednesday, May 13, 15

Check it out!

Wednesday, May 13, 15

Step Two: Check out the module!

You need to be working from a git repo to make a patch. Just downloading the module from
the links doesn’t work.

Find and click the link on the module’s page that says “Version Control”. Make sure that the
“Version to work from” form item says “-x” at the end. This is the dev version of the project.

 Then copy and paste the git clone line into your terminal.

Hack Away!

Now’s your chance!

Make changes, experiment, do all

the crazy things you can think of.

Don’t worry, you’re doing it the

right way, so the kittens are safe.

Wednesday, May 13, 15

Step Three: The Hack

The magic of source control means that you are not going to wind up with an unusable
module - you can always rewind your work and start over if you have to.

Then, enable the hacked module in a site, and test! Repeat this until it works just the way
you want.

Two Things to Remember

• Make sure you’re working against the dev
version of the module. If you are submitting to
the module’s issue queue (and we will be)
you’ll usually be asked by the maintainer to roll
your patch against the dev version.

• And please, please make sure you try to follow
best Drupal security practices!

Wednesday, May 13, 15

Make sure you’re working against the dev version of the module. It’s the latest code, and
when you submit it to the maintainer, they will expect you to be working on the newest code.

Also - please make sure to follow Drupal’s best practices for security! Use Form API, use
database abstraction, sanitize your text, and so on. There’s lots of good reading on this
topic.

Once you’re done, diff.

The Command line way:

git diff > patch_demo.patch

Wednesday, May 13, 15

Step Four: make the patch. There’s two ways.

The command line way:
cd into your module directory
git diff > patch file

This will put all modified files into the patch. There are command line options to only include
certain files, or to compare different directories, etc. However, I personally favor a different
way...

Once you’re done, diff.

Wednesday, May 13, 15

Sourcetree.

This is a GUI interface for management of your repositories, and it is awesome. It’s also free.

It’s made by Atlassian, the same company that makes Jira (ticket management), Confluence
(wiki) and BitBucket (repository), so it’s reliable, regularly updated, and easy to use.

Wednesday, May 13, 15

It lists the files you’ve changed...

Wednesday, May 13, 15

and shows you the changes to those files

Wednesday, May 13, 15

And you can create a patch just like that. The best part of creating a patch in Sourcetree is
that it will ask you which files to include, in a nice checkbox menu. Much better than having
to specify them on the command line.

Submit your work

Wednesday, May 13, 15

Step Five: Submit your work.

Wednesday, May 13, 15

This is the Issue Queue of a module. (You should already be familiar with this from searching
it for solutions before.)

Wednesday, May 13, 15

Create a new issue.

Wednesday, May 13, 15

Fill out all the form elements - make the title descriptive, and the summary a good
explanation of what the problem is.

You are not attaching your file just yet! Because...

Naming

[module name] - [short description] - [issue number]

- [comment number] . patch

example:

patch_demo-job_field-2056001-3.patch

Wednesday, May 13, 15

You’re going to rename your patch file to match the Drupal community’s standards. Here’s
how:

module name - short description of what your patch does - issue node number - comment
number .patch

Module name and short description are self explanatory, but let me show you where to find
those numbers...

Issue Number

Issue number is

the nid of the

issue queue node.

You find it in the

URL.

Wednesday, May 13, 15

After you’ve created the issue node in the issue queue, the issue number is the nid of that
node. It’s in the URL.

Comment Number

Comment number

is the number of

the comment on

the node, plus 1.

NOT the cid.

Wednesday, May 13, 15

In order to add a patch to the issue node, you’ll need to attach it to a comment. Your
comment number will be one more than the highest comment number on the node already.
If there are no comments, then it will be 1.

It is NOT the cid.

Naming

[module name] - [short description] - [issue number]

- [comment number] . patch

example:

patch_demo-job_field-2056001-3.patch

Wednesday, May 13, 15

Now that you have the numbers, you can rename your patch. In our example here, the patch
is to the “patch_demo” module (a sandbox module I made), the description is “job_field”,
because it’s a patch to add a field for “jobs” to a user, the issue nid is 2056001, and there
were already 2 comments in the issue so this will be attached to #3.

Rename it, then upload and make a comment like “Patch attached”.

Congratulations!

Wednesday, May 13, 15

Congratulations!

You are now a contributing member of the Drupal Community!

Think of all the kittens you’ve saved!

Use your work
in production

Wednesday, May 13, 15

Step Six: Bring all the pieces together.

Drush Make

Wednesday, May 13, 15

Drush make allows you to specify modules, libraries, themes... it makes site building work
the way it’s supposed to. It’s great, and if you aren’t using it, you should be.

One reason to use it is, in combination with some other tools, it allows you to avoid
committing contributed modules and core code to your repository.

Drush Make

Wednesday, May 13, 15

It also allows you to specify patches to apply to modules. The patches must be somewhere
accessible via the web, which is part of why we put it into the Drupal issue queue.

Running drush make on this make file will download drupal, the features module, and our
patch_demo module. It will assemble the site, then apply the patch to the patch_demo
module, making the changes we specified much earlier in the process.

That’s all there is to it.

Community
Response

Wednesday, May 13, 15

Discussion of possible outcomes for your patch (Acceptance / Rejection / Discussion).

Why bother?

Wednesday, May 13, 15

Since the patch only needs to be accessible to drush, it could be anywhere - like, on a file
server or your company’s web site download directory. Why contribute?

Because each of you, no matter how new, or inexperienced, or totally ninja, can help make
Drupal better. Communities work best when everyone contributes. Your patch may not be
accepted, but it may, or it may spark a discussion that leads to a better way of doing what
you need.

Also - even it it isn’t accepted, it’s in the issue queue file system, so it never goes away -
meaning you can continue to use it. I’ve submitted many patches I knew would never get
accepted, because I needed something to work in a particular unique way. That’s OK.

Finally, on a more personal note, contributing in the issue queues helps get you known in the
Drupal community. This is great for your career.

Links
• Drupal Patch Contributor Guide: drupal.org/node/1054616

• joshuabrauer.com/2008/07/dont-hack-core-and-dont-hack-
contrib-unless-you-have

• Git Diff: git-scm.com/docs/git-diff

• SourceTree: sourcetreeapp.com

• Phase2 Blog: phase2technology.com/blog/how-and-why-
to-patch-a-drupal-module

• Session Feedback: events.drupal.org/node/775

Wednesday, May 13, 15

Senior Developer

Email: jturton@phase2technology.com

Joshua Turton

Twitter: @sjinteractive

Wednesday, May 13, 15

Thank you all so much for coming! Again, I’m Joshua Turton with Phase2, and you can reach
me at this email or twitter handle, or at our booth in the exhibitor’s hall.

Please, if you liked this talk, or even if you didn’t, leave feedback on the session page! It’s
also where you will be able to download the slides.

If you’d like a demo of this process, find me at our booth and we can walk through it
together!

Drupal Camp Costa Rica

drupalcamp.cr/en

Wednesday, May 13, 15

One last thing, a plug for Drupal Camp Costa Rica, happening in San Jose, Costa Rica at the
end of July. If you are interested in speaking, sessions submissions will be open soon!
Sponsorship opportunities will also be available. Talk to me for more information.

PHASE2TECHNOLOGY.COM

Wednesday, May 13, 15

Questions?

