1-1

Infrastructure
Troubleshooting Secrets:’

g | - |

1;1 :-::_ -
I =z
{ M
Amin Astaneh, DevOps Track, DrupalCon Nashville
I

Who Am I?

Amin Astaneh

Senior Manager, SRE at Acquia
Served on Ops Team for 5 years
Been on-call countless times
Been paged countless times
Heavily contributed to incident
response process and tooling
Built SRE competency, DevOps
initiatives for 2 years

Agenda

Intro

The USE Method
Hardware Resources
Software Resources
Process Introspection
Outage Scenarios

Presentation Objectives

e Gain a basic understanding of the infrastructure level
e lLearn a simple set of processes and tools to gather
information about your infrastructure

e Learn how these tools can be used to identify current
pain points in your Drupal availability/performance

5 years of Ops experience packed into less than 1 hour!

Slides will be uploaded after the presentation!

1-1

Misconé%ptions About
People That Understand
Infrastructure

Lo | p
11

The Big Secret

They are HUMAN

They have tools

They have processes

They have heuristics based on past experience

You can learn what they know!

Before We Begin

e LAMP (GNU/Linux)
e You know CLI basics
e You have SSH access to your infrastructure

1-1

da

- —4
L0,

- The USE Method?

l_] :.::- -
= |

0

Q

Origin of USE Method

Brendan Gregg, Performance Engineer at Netflix:

“I developed the USE Method to teach others how to solve
common performance issues quickly, without overlooking
important areas.. it is intended to be simple,
straightforward, complete, and fast.”

http://www.brendangregq.com/usemethod.html

http://www.brendangregg.com/usemethod.html

The USE Method

For every resource, check:

e Utilization
e Saturation
e Errors

Resources

e All physical server functional components
o CPU(s), Memory, Disk(s), Network Adapter(s)

e All software functional components
o PHP Proc Pool, MySQL innodb_buffer_pool, Varnish cache

e All 0S functional components
o Max processes, max open files, max tcp connections

Utilization

The average time that a resource was busy doing work.
Usually represented as a percentage over an interval.

Eg: 75% of available memory was being used on Server X over
the last 5 seconds.

Saturation

The degree to which the resource has extra work which it
can't service, often queued.

Eg: queue_wait values in the Drupal request log are
increasing due to all PHP processes handling requests.

This can be measured or observed via other signals (logs,
error messages, etc) * L

Errors

The total count of a resource demonstrating that it is not
functioning as designed or intended (error events).

Eg: The CLI printed ‘Input/output error’ when I tried to
read a file from disk.

This can also be measured or observed via other signals
(logs, error messages, etc)

MAGIC-1 LIFE-1 NEXT
B e e SOUD LR

a

1-1

3

1-1

i

0

Main Hardware Resources

CPU

Memory

Storage (Capacity, I/0)
Network I/0

A Word On “top"

YOU USE THAT TOOL

' r‘t &

T

il
| DON'T THINK IT SAYS
WHAT YOU THINK IT SAYS _

-~

A Word On “top"

Start with single-purpose tools first before using the
all-in-one tools like top and its brethren.

CPU

There are several types of CPU Utilization.

Let’'s discuss the common ones:

USR: Time spent in user apps (Eg: Drupal, Cron)

SYS: Time spent in the kernel (Eg: reading/writing to the
network device)

e IOWAIT: Time spent waiting on storage devices (Eg:
reading/writing to disks)

e IDLE: Time spent not doing anything. (©%=saturation)

You can observe these metrics in aggregate or per CPU core, which is
important when considering single-threaded processes (not common).

Measuring CPU

Simple:

e ‘dstat -c': Recent, co zed
e 'mpstat 1 : Older, non-colorized

Complex:

e "htop': co zed
e 'top : classic and ubiquitous
e atop : supports process accounting

Example “dstat’™ Output

-——={pial-cpl-usage———- =% ltal -chlu-tsage———
usr sys idl wai hig sig usr sys idl wai hig sig
69 86
92 86
89 86
88 86
82 86
75 87
75 Can you speculate about what 86
is happening for each set of e
-——-total-cpu-usage—-——- metrics? ----total-cpu-usage----
usr sys idl wai hig sig usr sys idl wai hig sig
99 88
1688 87
1608 88
168 87
168 88
188 88

188 88

Example “dstat’™ Output

~~~~~ total -cpu-usage----
usr sys idl wai hig sig
69
92
WRITING LARGE FILE
82
4
75
se==tR Tl P iSalE—
usr sys idl wai hig siq
99
188
SYSTEM» IS IDLE
1688
188
1688

188

Can you speculate about what
is happening for each set of
metrics?

. 1 e ol 1 1 g 1= 1] e
usr sys idl wai hig sig
86
86

NETWORK FILE

TRANSFER
87
kL

eesetnial “ERL-HSage——
usr sys idl wai hiqg siqg
88
87

SQPU STRESS TEST
88

88
<L




Let’'s Talk About Load Averages

‘uptime’ and “top  displays the load average, which is
basically the number of processes competing for CPU
resources over 1m, 5m, and 15m.

A general rule: If the load average >= the number of server
cores, that is a sign of saturation.

(You can easily find number of cores with “nproc --all’.)

amin@ubuntu:™$ uptime

15:41:09 up 1 day, 9:28, 1 user, load average: 1.62, 1.36, 1.40
amin@ubuntu:™$ nproc --all
4



Memory

Servers have a pool of RAM used for running applications. You can
check its utilization with “free -m:
amin@ubuntu:”$ free -m

total used free shared buff/cache available
Mem: 7982 2 7693 8 216 7653
Swap: 8191 4] 8191

amin@ubuntu:”$ |

Buffers:
Cache:
Available:

The metric you will usually care about is

Used: memory used by actual processes
Shared: memory shared between processes

used for reading/writing to devices
stores copies of files in memory for fast access
the actual amount of memory free for use

‘available’



Memory, cont.

You might see output from "free -m" that looks like this. Here's now
to determine how much memory is available on a system:

amin@ubuntu:™$ free -m

total used free shared buffers cached
Mem: 489 441 48 % 90 214,
-/+ buffers/cache: 139 350

Swap ! 4 4

4]
amin@ubuntu:”~$ |

An entertaining reference: https://www.linuxatemyram.com/



https://www.linuxatemyram.com/

Memory Saturation

What happens when you start to run out of memory?
Swapping.

Contents of RAM will get stored in the swap partition or file, if
configured. Hard disk storage is several orders of magnitude slower
than RAM, so performance will suffer.

You can check with “free -m’.

total used free shared buff/cache available
Mem: 7982 72 7693 8 216 7653
Swap: 8191 4 8191

amin@ubuntu:”$



Memory Saturation

When memory is completely exhausted, the Linux Kernel's 00M-killer
will kill processes to free up memory.

You can check for these events by looking at the kernel log or
running “dmesgqg’ :

Mar 15 10:10:26 ubuntu kernel: mysqld invoked oom-killer: gfp_mask=0x201da,
order=0, oom_score_adj=-1000



Disk Storage

To measure utilization of storage

network-attached storage, use “df
amin@ubuntu: ™% df -m -x tmpfs -x devtmpfs

Filesuystem IM-blocks Used
/dev/mapper /ubuntu--vg-root 11483 1970
/dev/sdal 472 186
/home/amin/.Private 11483 1970
amin@ubuntu:“$ |

When Use% is at 100%, the disk 1is

Pretty straightforward, right?

capacity of your local disks and
_m‘
Available Use® Mounted on

g9m8  19% /

342 24% /boot
89688 19% /home/samin

full (saturated).



Disk Storage

.. or is it?

Another important thing to measure
is the number of inodes (or
loosely, the total number of
files) on the filesystem.

Filesystems have a max number of
inodes they can store that cannot
be changed.

Watch out for this! Run “df -i’!

amin@ubuntu:™$ touch test
touch: cannot create regular file

amin@ubuntu:™$ df -h
Filesystem

udev

tmpfs

/dev/mapper /ubuntu--vg-root

tmpfs

tmpfs

tmpfs

/dev/sdal

tmpfs
/home/amin/ . Private

amin@ubuntu:™$ df -i
Filesystem

udev

tmpfs

/dev/mapper /ubuntu--vg-root

tmpfs

tmpfs

tmpfs

/dev/sdal

tmpfs
/home/amin/ . Private

‘test '

Size Used Av
3.96 8 3
799M 8.7M 7

126 3.46 7
3.96 4.8k 3
5.6M B 5
3.96 g 3
472M  186M 3
799M g 7

126 3.46 7

Inodes IUsed
1016709 446
1621782 599

755904 755904

1821782 2
1021782 3
1821782 16
124928 309
1021782 q

755904 755904

No space

ail Use%
.96 0%
9pM 2%
.36 32%
.96 1%
BM 0%
.96 0%
42M  24%
9sM 0%
.36 32%

IFree
1016263
1021183

5}
1021780
1021779
1021766

124619
1021778
%}

left on device

Mounted on
/dev

/run

/

/dev/shm
/run/lock
/sys/fs/cgroup
/boot
/run/user /1000
/home/amin

IUse% Mounted on
1% /dev
1% /run
100% /
1% /dev/shm
1% /run/lock
1% /sys/fs/cgroup
1% /boot
1% /run/user /10060
108% /home/amin



Disk I/0

The only command you’'ll ever need: “iostat -mxt 1°:

Every second, print eXtended statistics in megabytes.

n4/88/2018 B8:10:34 PM
avg-cpu: #user #nice %system %iowait %steal “idle
Bi::13 a.a8e 2573 1.84 a.8e8 96.18

Device: rrgm/s wrgm/s ris Ww/s rMB/s wMB/s avgrg-sz avgqu-sz avait r_await w_await svctm Hutil
sda B.0e @.0e 4.88 314.080 B.a2 154.12 992 .65 50.78 194.78 14.88 197.81 1.42 45.28@
dm-@a f.0e @.0e 4,60 94 .00 B.a2 88.62 1852.24 26.26 326.88 14.88 339.36 4.61 45.28@
dm-1 f.0e a.00 g.6a A.00 g.0a g.6a g.6a g.pa @.00 g.6a a.0e g.6a B.6a
dm-2 B.0e B.06 a.6a g.00 g. 060 g. 60 8. 60 g.60 B.08 g.0e B.08 g.0a0o g.06

Let’'s discuss what’s happening here! Key metrics are:

e rMB/s and wMB/s: read and write throughput in megabytes
e r_await/w_await: average time to service read and write
requests. Sustained high values (> 1000) indicate saturation.



Network I/0

Most systems have gigabit network adapters.

You can check the theoretical maximum your network interface
can support with ethtool:

amin@ubuntu:™$ ethtool enol | grep Speed
Speed: 16006Mb/s



Network I/0

You can observe per-second data rates from all network
interfaces with bwm-ng. This link is 1.1% utilized.

bum-ng v@.6 (probing every 1.800s), press 'h' for help
input: /proc/net/dev type: rate

4 iface Rx Tx
vnetd B.08 Kb/s B.41 Kb/s

Lo B.00 Kb/s B.08 Kb/s

virbrg. 0.8 Kb/s B.086 Kb/s

enol: 11366.81 Kb/s 259,63 Kb/s

total: 11386.81 Kb/s 260,04 Kb/s

"sudo bwm-ng -t 1000 -u bits’

("dstat -n° is useful as well)

o0

11566.84 Kb/s



a

1-1

3

1-1

i

0



Common Types of Software Resources

All software services (Eg: Apache, MySQL, etc) have some
form of tunable resources that introduce constraints.

e Process pools
e Connection limits
e Memory allocations

We’'ll discuss the common ones and how to detect saturation.



PHP's memory_limit

This limits the amount of memory that a single PHP execution
can use.

Saturation can be checked in the webserver error logs:

“Fatal error: Allowed memory size of 134217728 bytes exhausted (tried to
allocate 44 bytes) in /var/www/html/test.php on line 36"



PHP-FPM’'s pm.max_children

This limits the number of simultaneous requests that PHP-FPM
will handle.

Similar to “FcgidMaxProcessesPerClass” from mod_fcgid.

Saturation can be checked in the webserver logs:

“WARNING: [pool www] server reached pm.max_children setting (5),
consider raising it.”



MySQL's max_connections

This limits the number of concurrent connections that MySQL
will handle.

Saturation can be checked in the webserver error logs:

“SQLSTATE[08004] [10408] Too many connections”



Apache’s MaxRequestWorkers

This limits the number of simultaneous requests that Apache
will handle.

Formerly known as MaxClients prior to 2.3.13.

Saturation can be checked in the Apache error logs:

“server reached MaxRequestWorkers setting”



MySQL's innodb_buffer_pool_size

The InnoDB buffer pool is a cache for your data and indexes
in MySQL, which speeds up read requests.

Saturation can be checked by seeing how often MySQL performs
cache evictions by flushing to disk.

root@ubuntu:™# mysql -e "show status like 'Innodb_buffer_pool_wait_free'

e Fo————— +
| Variable_name | Value |
o +—————— +
| Innodb_buffer_pool_wait_free | © |
o Fom———— +

https://dev.mysgl.com/doc/refman/5.7/en/server-status-variables.html#statvar_Innodb_buffer_pool _wait_free



https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Innodb_buffer_pool_wait_free

Varnish Cache Size

Varnish deflects backend requests to Drupal by caching and
serving previous requests, which improves performance.

Saturation can be checked by seeing the rate that Varnish
performs cache evictions by rate of change to the
n_lru_nuked counter.

root@ubuntu:™# varnishstat -1 | grep nuked
MARIN.n_lru_nuked 4 : Number of LRU nuked objects



Don't just increase settings!

A common urge is to just increase connections and process
limits. Resist the temptation.

For example:

Blindly increasing FPM’'s pm.max_children may saturate
available memory and make a performance problem even worse.

Custom ini_set() of memory_limit to a large value will
produce similar results.



g |

1-1

Process Introspection

3

a

=
=]

L |
]





http://www.youtube.com/watch?v=LkqKFamTkME&t=15

Yes, you can actually do this.

(though it doesn’t look as impressive as it does in Hackers...)



strace: a system call tracer

e Attaches to running programs and shows in real time their
activity

e System calls are basically how a program asks the 0S to
do something (file or network read/write, memory mgmt)

e Does slow down execution



strace basic example

open("/dev/null", O_RDONLY) =3

fstatéd, {st_mode=S_IFCHRIB666, st_rdev=makedev(l, 3), ...}) =0

fadvisebd(3+.8, B, POSIX_FADV_SEQUENTIAL) = O

mmap (NULL, 139264+ . PROT_READIPROT_WRITE, MAP_PRIVRTE IMAP_ANONYMOUS, -1, B) = Bx7f7d3b324000

read(3, "", 131072) =0
munmap (Bx7f7d3b324600, 139264 =
close(3) =0
close(l) =.0
close(2) =0

= &

exit_group(@)
+++ exited Uith_@ +++

"strace cat /dev/null’
There’s a manual page for each syscall, too!

‘man 2 <syscall>"



Now a more interesting example..

[pid 103421 sendto(11, "\345\B\B\B\3SELECT cid, data, created, expire, serialized, tags, checksum FROM cache_contai
ner WHERE cid IN ( 'service_container:prod:8.5.1::Linux:a:1:{1:0;5:57:\\\"/mnt/www/html/buytaert/docroot/sites/defa
ult/services.yml\s\";3" ) ORDER BY cid", 233, MSG_DONTWAIT, NULL, 8) = 233

[pid 103421 poll([{fd=11, events=POLLINIPOLLERRIPOLLHUP}I, 1, 1471228928) = 1 ([{fd=11, revents=POLLIN}1)

[pid 183421 recvfrom(11l, "NINBABNINTENDADA2\3def\vbuytaert_db\17cache_container\17cache_container:y3", 58, MSG_DONTW

AIT, NULL, NULL) = 58
[pid 103421 recvfrom(11l, "container:prod:8.5.1::Linux:a:1:{i:8;s5:57:\"/mnt/www/html/buytaert/docroot/sites/default/

services.yml\";¥\375\341\f\5a:5:{s:7:\"aliases\";a:6:{s5:32:\"Psr\\Container\\ContainerInterface\";s:17:\"service_co
ntainer\";s:56:\"Sumfony\\Componenti\\Dependencylnjectioni\ContainerInterface\";s:17:\"service_container\";s:19:\"co
nfig.storage.sync\";s:22:\"config.storage.staging\";s:15:\"session_handler\";s:26:\"session_handler .write_safe\";s:
12:\"element_info\";5:27:\"plugin.manager .element_info\";5:22:\"access_check.rest .csrf\";s:24:\"access_check . .header
.csrf\";rs:10:\"parameters\";a:24:{5:18:\"kernel .environment\";s:4:\"prod\";s5:17:\"container .modules\";a:40:{s5:5:\"
album\";a:3:{s:4:\"type\";s5:6:\"moduleN" ;5:8:\"pathname\" ;5:38:\"sites/all/modules/album/album. info.yml\";5:8:\"fil
ename\";s5:12:\"album. module\";¥s:14:\"automated_cron\";a:3:{s:4:\"type\";5:6:\"module\";5:8:\"pathname\";5:51:\"cor
e/modules/automated_cron/automated_cron.info.yml\";s:8:\"filename\";5:21:\"automated_cron.module\";3}s:5:\"block\";a
13i{s:4:\"type\";s5:6:\"module\";5:8:\"pathname\" ;5:33:\"core/modules/block/block. info.yml\";s5:8:\"filen" ..., 32855,
MSG_DONTWAIT, NULL, NULL) = 32855

Output from “strace -f -p <PID> -s 1024°, tracing an PHP-FPM
parent and its children for https://dri.es



https://dri.es

Let’'s break it down..

e -f: follows child processes

e -p: process ID, or PID

e -s 1024: print up to 1024 characters of output from each
syscall

Extra flags:

e -e 'trace=sendto,recvfrom': only prints those syscalls
e -e 'trace=!gettimeofday': excludes syscalls
e -T: print time spent in each syscall



So what can I do with it?

When tracing a PHP process:

Observe
Observe
Observe
Observe
Measure

MySQL statements

Memcached statements

HTTP responses

file accesses

time spent in each syscall



lsof: list open files

e Prints open files and network connections for all running
processes or for a single process (-p PID)

e Lists the file descriptor ids, enabling cross-referencing
with strace



amin@gunbai:™$ 1sof -p 9155
lsof: WARNING: can't stat() tracefs file system /sys/kernel/debug/tracing
information may be incomplete.

Output

COMMAND PID

vim
vim
vim
vim
vim
vim
vim
vim
vim
vim
vim
vim
vim
vim
vim
vim
vim
vim
vim
vim
vim
vim
vim
vim
vim
vim
vim
vim

9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155

9155

USER
amin
amin
amin
amin
amin
amin
amin
amin
amin
amin
amin
amin
amin
amin
amin
amin
amin
amin
amin
amin
amin
amin
amin
amin
amin
amin
amin

amin

FD
cuwd
rtd
txt
mem
mem
mem
mem
mem
mem
mem
mem
mem
mem
mem
mem
mem
mem
mem
mem
mem
mem
mem
mem

Bu
1u
2u
3u
bu

TYRE
DIR
DIR
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
CHR
CHR
CHR
REG
CHR

DEVICE SIZE/OFF

253,3
253,1
253,1
253,1
2531
253,1
253,1
203,1
253,1
253,1
253,1
253,1
203,1
253,1
253,1
253,1
203,1
253,71
203,1
253,1
203,1
253,1
203,1
136,08
136,0
136,08
253,1
136,08

4096
4696
2437320
47600
47648
93128
35688
29681280
18656
104864
166632
18624
456632
1868984
138696
4547880
14608
27080
31232
1308224
167240
1888952
162632
0to

0to

0to
12288
0to

NODE
12658625
2
399062
143565
143569
143549
143560
7506
143559
155902
155744
155701
155840
143552
143551
2413
143554
8232
155691
155869
155883
143548
143550
3

3

3
132654
3

NAME

/home/amin

/

/usr/bin/vim.basic
/1ib/x86_64-1inux-gnu/libnss_files-2.23.s0
/1ib/x86_64-1inux-gnu/libnss_nis-2.23.s0
/1ib/x86_b64-1inux-gnu/libnsl-2.23.s0
/1ib/x86_64-1inux-gnu/libnss_compat-2.23.s0
/usr/lib/locale/locale-archive
/1ib/x86_64-1inux-gnu/libutil-2.23.s0
/11b/x86_64-1linux-gnu/libz.s0.1.2.8
/1ib/x86_64-1inux-gnu/libexpat.s0.1.6.0
/11b/x86_64-1linux-gnu/libattr.so.1.1.8
/1ib/x86_64-1inux-gnu/libpcre.so0.3.13.2
/11b/%x86_64-1linux-gnu/1libc-2.23.s0
/1ib/x86_64-1inux-gnu/libpthread-2.23.s0
/usr/1ib/x86_64-1inux-gnu/1ibpython3.5m.s0.1.0
/1ib/x86_64-1inux-gnu/1ibdl-2.23.s0
/usr/1ib/x86_64-1inux-gnu/libgpm.so.2
/1ib/x86_64-1inux-gnu/libacl.so0.1.1.8
/1ib/x86_64-1inux-gnu/libselinux.so.1
/1ib/x86_64-1inux-gnu/libtinfo.s0.5.9
/1ib/x86_64-1inux-gnu/libm-2.23.s0
/1ib/x86_64-1inux-gnu/1d-2.23.s0
/dev/pts/0

/dev/pts/@

/dev/pts/0

/tmp/.garbagefile.suwp

/dev/pts/0



g |

11
h=
I, 3
o

- Qutage Scenarios

3

-

0



My Troubleshooting ‘Kata’

USE Method: Identify all saturated resources (constraints)
Plan: Choose the main constraint and decide how to address it
Do: Implement the change

Check: USE Method: Is the resource still a constraint?
Act

o If site is back up: SUCCESS

o If improvement but still unresolved: Keep change, plan with

new main constraint
o If unchanged or worse: undo change and plan again




MI'S L server
*100GB storage

dySQL client
connection

HTTP reverse

HTTP client request proxying

load balancer
*varnish caching (:80)

* nginx load balancing GlusterFsS server

+100GB storage

web tier
*apache
* php-fpm (10 procs each)



Scenario 1

e Qur site either loads slowly or times out with a 563 when
requesting an uncached page.
e We apply USE Method to the balancers and find no saturation.
We apply USE Method to the web servers, and find:
o All PHP-FPM processes are in use (pm.max_children warnings)
o CPU is mostly idle. When running top/ps, the PHP processes aren’'t the

top consumers.
o 1sof on all of the php-fpm processes shows this output:

php-fpm 1161 drupal 10u IPv4 126303135 0t0 TCP
server-123.custom.domain.t1d:23319->ec2-50-123-321-2.compute-1.amazonaws.com:https (ESTABLISHED)

Can you guess what's happening?



Scenario 1

« In Acquia Operations, we call this scenario an ‘external call’,
where a Drupal site is making a call to a 3rd party service.

e If the third party service is slow/down, it can directly impact
performance of your site as your code is waiting for a response.
We have even seen instances of sites making calls to itself!
The solution:

o remove dependence on 3rd party services where possible
o program defensively to gracefully degrade when it is
unavailable.



Scenario 2

e Qur site either loads slowly or times out with a 563 when
requesting an uncached page.
e We apply USE Method to the balancers and find no saturation.

We apply USE Method to the web servers, and find:
o All PHP-FPM processes are in use (pm.max_children warnings)
o CPU is 50% utilized by PHP-FPM processes in USR.
e We apply USE Method to the database server, and find this metric

for the database volume by running iostat:

Device: rrgm/s  wrgm/s r/s w/s rMB/s wMB/s avgrg-sz avggqu-sz  awalt r_await w_await svctm Zutil
xyvdm 0.00 0.00 0.60 22.00 1.82 94.25 17.68 9.83 120.57 @.66 128.57 1.45 96.708

What's happening here?



Scenario 2

We suspect very high write operations on the database, and decide to
print MySQL’'s processlist. ( mytop -d mysql'). We see a large
quantity of statements that look like this:

12514 drupal web-123 drupal 3 Query INSERT INTO watchdog
(uid, type, message, variables, severity, link, location, referer, hostname,
timestamp) VALUES ('@', 'stuff

What did we discover?



Scenario 2

The site had the dblog module enabled.

e In situations where a site is emitting a lot of code errors,
massive write operations will happen to the database, saturating
the underlying storage.

e Solution: don’'t use the dblog module. Use syslog instead.



Scenario 2

The site had the dblog module enabled.

e In situations where a site is emitting a lot of code errors,
massive write operations will happen to the database, saturating
the underlying storage.

e Solution: don’'t use the dblog module. Use syslog instead.



1-1

Let’s Recap![

3

h =

1-1

0



Let’'s Recap!

Troubleshooting infrastructure is accessible to mortals
The USE Method

Hardware Resources

Software Resources

Process Introspection

PDCA as a process for improving performance



>PAEHOXTT

W E

NOoBEP Y

= p QO

DUy
_ 0ol i

VI o B
0 -

' f¢ UM XE
[ I e
- i o
g
| U0 O~
1
¥ 00® v [T

TN 2h
[l | & on |
<
~
o
i ¢
W= XNl

H = H

=ma
=W

leg = ne [J

0

DEH 4

ik,
L P
o L [

-r.ﬁ.ﬁ&

5
Bt 07

S QT



What did you think?

Locate this session at the DrupalCon Nashville website:

http://nashville2018.drupal.org/schedule

Take the Survey!

https://www.surveymonkey.com/r/DrupalConNashville


http://nashville2018.drupal.org/schedule

Join us for

contribution sprints
Friday, April 13, 2018

Mentored First time General
Core sprint sprinter workshop sprint

9:00-18:00 9:00-12:00 9:00-18:00

Room: 103 Room: 101 Room: 104

#drupalsprint



Media Credits

The Fellowship of the Ring (New Line Cinema)

Ghost In The Shell (Kodansha, Bandai Visual, Manga Entertainment)
Hackers (United Artists)

Zelda II: The Adventure of Link (Nintendo)

The Princess Bride (Act III Communications)

Superman (Max Fleischer Studios, Paramount Pictures)

PDCA Diagram (Karn G. Bulsuk, http://www.bulsuk.com)



Amin Astaneh

T: @aastaneh

IRC: amin
amin@aminastaneh.net




