
Infrastructure 
Troubleshooting Secrets:

Revealed!

Amin Astaneh, DevOps Track, DrupalCon Nashville



Who Am I?

● Amin Astaneh
● Senior Manager, SRE at Acquia
● Served on Ops Team for 5 years
● Been on-call countless times
● Been paged countless times
● Heavily contributed to incident 

response process and tooling
● Built SRE competency, DevOps 

initiatives for 2 years



Agenda
● Intro
● The USE Method
● Hardware Resources
● Software Resources
● Process Introspection
● Outage Scenarios









Presentation Objectives
● Gain a basic understanding of the infrastructure level
● Learn a simple set of processes and tools to gather 

information about your infrastructure
● Learn how these tools can be used to identify current 

pain points in your Drupal availability/performance

5 years of Ops experience packed into less than 1 hour!

Slides will be uploaded after the presentation!



Misconceptions About
People That Understand 

Infrastructure







The Big Secret
● They are HUMAN
● They have tools
● They have processes
● They have heuristics based on past experience

You can learn what they know!



Before We Begin
● LAMP (GNU/Linux)
● You know CLI basics
● You have SSH access to your infrastructure



The USE Method



Origin of USE Method
Brendan Gregg, Performance Engineer at Netflix:

“I developed the USE Method to teach others how to solve 
common performance issues quickly, without overlooking 
important areas.. it is intended to be simple, 
straightforward, complete, and fast.”

http://www.brendangregg.com/usemethod.html

http://www.brendangregg.com/usemethod.html


The USE Method
For every resource, check:

● Utilization
● Saturation
● Errors



Resources
● All physical server functional components

○ CPU(s), Memory, Disk(s), Network Adapter(s)

● All software functional components
○ PHP Proc Pool, MySQL innodb_buffer_pool, Varnish cache

● All OS functional components
○ Max processes, max open files, max tcp connections



Utilization
The average time that a resource was busy doing work.

Usually represented as a percentage over an interval.

Eg: 75% of available memory was being used on Server X over 
the last 5 seconds.



Saturation
The degree to which the resource has extra work which it 
can't service, often queued.

Eg: queue_wait values in the Drupal request log are 
increasing due to all PHP processes handling requests. 

This can be measured or observed via other signals (logs, 
error messages, etc)



Errors
The total count of a resource demonstrating that it is not 
functioning as designed or intended (error events).

Eg: The CLI printed ‘Input/output error’ when I tried to 
read a file from disk.

This can also be measured or observed via other signals 
(logs, error messages, etc)



Hardware Resources



Main Hardware Resources

● CPU
● Memory
● Storage (Capacity, I/O)
● Network I/O



A Word On `top`



A Word On `top`

Start with single-purpose tools first before using the 
all-in-one tools like top and its brethren.



CPU
There are several types of CPU Utilization. 

Let’s discuss the common ones:

● USR: Time spent in user apps (Eg: Drupal, Cron)
● SYS: Time spent in the kernel (Eg: reading/writing to the 

network device)
● IOWAIT: Time spent waiting on storage devices (Eg: 

reading/writing to disks)
● IDLE: Time spent not doing anything. (0%=saturation)

You can observe these metrics in aggregate or per CPU core, which is 
important when considering single-threaded processes (not common).



Measuring CPU
Simple:

● `dstat -c`: Recent, colorized
● `mpstat 1`: Older, non-colorized

Complex:

● `htop`: colorized
● `top`: classic and ubiquitous
● `atop`: supports process accounting



Example `dstat` Output

Can you speculate about what 
is happening for each set of 

metrics?



Example `dstat` Output

Can you speculate about what 
is happening for each set of 

metrics?

SYSTEM IS IDLE

WRITING LARGE FILE

CPU STRESS TEST

NETWORK FILE
TRANSFER



Let’s Talk About Load Averages
`uptime` and `top` displays the load average, which is 
basically the number of processes competing for CPU 
resources over 1m, 5m, and 15m.

A general rule: If the load average >= the number of server 
cores, that is a sign of saturation.

(You can easily find number of cores with `nproc --all`.)



Memory 
Servers have a pool of RAM used for running applications. You can 
check its utilization with `free -m`:

● Used: memory used by actual processes
● Shared: memory shared between processes
● Buffers: used for reading/writing to devices
● Cache: stores copies of files in memory for fast access
● Available: the actual amount of memory free for use

The metric you will usually care about is ‘available’.



Memory, cont. 
You might see output from `free -m` that looks like this. Here’s now 
to determine how much memory is available on a system:

An entertaining reference: https://www.linuxatemyram.com/

https://www.linuxatemyram.com/


Memory Saturation
What happens when you start to run out of memory?

Swapping. 

Contents of RAM will get stored in the swap partition or file, if 
configured. Hard disk storage is several orders of magnitude slower 
than RAM, so performance will suffer.

You can check with `free -m`.



Memory Saturation
When memory is completely exhausted, the Linux Kernel’s OOM-killer 
will kill processes to free up memory. 

You can check for these events by looking at the kernel log or 
running `dmesg`:

Mar 15 10:10:26 ubuntu kernel: mysqld invoked oom-killer: gfp_mask=0x201da, 
order=0, oom_score_adj=-1000



Disk Storage
To measure utilization of storage capacity of your local disks and 
network-attached storage, use `df -m`.

When Use% is at 100%, the disk is full (saturated). 

Pretty straightforward, right?



Disk Storage
.. or is it?

Another important thing to measure 
is the number of inodes (or 
loosely, the total number of 
files) on the filesystem.

Filesystems have a max number of 
inodes they can store that cannot 
be changed.

Watch out for this! Run `df -i`!



Disk I/O
The only command you’ll ever need: `iostat -mxt 1`:

Every second, print eXtended statistics in megabytes.

Let’s discuss what’s happening here! Key metrics are:

● rMB/s and wMB/s: read and write throughput in megabytes
● r_await/w_await: average time to service read and write 

requests. Sustained high values (> 1000) indicate saturation.



Network I/O
Most systems have gigabit network adapters.

You can check the theoretical maximum your network interface 
can support with ethtool:

 



Network I/O
You can observe per-second data rates from all network 
interfaces with bwm-ng. This link is 1.1% utilized.

`sudo bwm-ng -t 1000 -u bits`

(`dstat -n` is useful as well)



Software Resources



Common Types of Software Resources
All software services (Eg: Apache, MySQL, etc) have some 
form of tunable resources that introduce constraints.

● Process pools
● Connection limits
● Memory allocations

We’ll discuss the common ones and how to detect saturation.



PHP’s memory_limit
This limits the amount of memory that a single PHP execution 
can use.

Saturation can be checked in the webserver error logs:

“Fatal error: Allowed memory size of 134217728 bytes exhausted (tried to 
allocate 44 bytes) in /var/www/html/test.php on line 36”



PHP-FPM’s pm.max_children 
This limits the number of simultaneous requests that PHP-FPM 
will handle.

Similar to “FcgidMaxProcessesPerClass” from mod_fcgid.

Saturation can be checked in the webserver logs:

“WARNING: [pool www] server reached pm.max_children setting (5), 
consider raising it.”



MySQL’s max_connections
This limits the number of concurrent connections that MySQL 
will handle.

Saturation can be checked in the webserver error logs:

“SQLSTATE[08004] [1040] Too many connections”



Apache’s MaxRequestWorkers
This limits the number of simultaneous requests that Apache 
will handle.

Formerly known as MaxClients prior to 2.3.13.

Saturation can be checked in the Apache error logs:

“server reached MaxRequestWorkers setting”



MySQL’s innodb_buffer_pool_size
The InnoDB buffer pool is a cache for your data and indexes 
in MySQL, which speeds up read requests.

Saturation can be checked by seeing how often MySQL performs 
cache evictions by flushing to disk.

https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Innodb_buffer_pool_wait_free

https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Innodb_buffer_pool_wait_free


Varnish Cache Size
Varnish deflects backend requests to Drupal by caching and 
serving previous requests, which improves performance.

Saturation can be checked by seeing the rate that Varnish 
performs cache evictions by rate of change to the 
n_lru_nuked counter.



Don’t just increase settings!
A common urge is to just increase connections and process 
limits. Resist the temptation.

For example: 

Blindly increasing FPM’s pm.max_children may saturate 
available memory and make a performance problem even worse.

Custom ini_set() of memory_limit to a large value will 
produce similar results.



Process Introspection



http://www.youtube.com/watch?v=LkqKFamTkME&t=15


Yes, you can actually do this.
(though it doesn’t look as impressive as it does in Hackers...)



strace: a system call tracer
● Attaches to running programs and shows in real time their 

activity
● System calls are basically how a program asks the OS to 

do something (file or network read/write, memory mgmt)
● Does slow down execution



strace basic example

`strace cat /dev/null`

There’s a manual page for each syscall, too!

`man 2 <syscall>`



Now a more interesting example..

Output from `strace -f -p <PID> -s 1024`, tracing an PHP-FPM 
parent and its children for https://dri.es

https://dri.es


Let’s break it down..
● -f: follows child processes
● -p: process ID, or PID
● -s 1024: print up to 1024 characters of output from each 

syscall

Extra flags:

● -e 'trace=sendto,recvfrom': only prints those syscalls
● -e 'trace=!gettimeofday': excludes syscalls
● -T: print time spent in each syscall



So what can I do with it?
When tracing a PHP process:

● Observe MySQL statements
● Observe Memcached statements
● Observe HTTP responses
● Observe file accesses
● Measure time spent in each syscall 



lsof: list open files
● Prints open files and network connections for all running 

processes or for a single process (-p PID)
● Lists the file descriptor ids, enabling cross-referencing 

with strace





Outage Scenarios



My Troubleshooting ‘Kata’
● USE Method: Identify all saturated resources (constraints)
● Plan: Choose the main constraint and decide how to address it
● Do: Implement the change
● Check: USE Method: Is the resource still a constraint?
● Act

○ If site is back up: SUCCESS
○ If improvement but still unresolved: Keep change, plan with 

new main constraint
○ If unchanged or worse: undo change and plan again





Scenario 1 
● Our site either loads slowly or times out with a 503 when 

requesting an uncached page.
● We apply USE Method to the balancers and find no saturation.
● We apply USE Method to the web servers, and find:

○ All PHP-FPM processes are in use (pm.max_children warnings)
○ CPU is mostly idle. When running top/ps, the PHP processes aren’t the 

top consumers.
○ lsof on all of the php-fpm processes shows this output:

php-fpm 1161     drupal   10u IPv4      126303135   0t0    TCP 
server-123.custom.domain.tld:23319->ec2-50-123-321-2.compute-1.amazonaws.com:https (ESTABLISHED)

Can you guess what’s happening?



Scenario 1 
● In Acquia Operations, we call this scenario an ‘external call’, 

where a Drupal site is making a call to a 3rd party service.
● If the third party service is slow/down, it can directly impact 

performance of your site as your code is waiting for a response.
● We have even seen instances of sites making calls to itself!
● The solution: 

○ remove dependence on 3rd party services where possible
○ program defensively to gracefully degrade when it is 

unavailable.



Scenario 2 
● Our site either loads slowly or times out with a 503 when 

requesting an uncached page.
● We apply USE Method to the balancers and find no saturation.
● We apply USE Method to the web servers, and find:

○ All PHP-FPM processes are in use (pm.max_children warnings)
○ CPU is 50% utilized by PHP-FPM processes in USR. 

● We apply USE Method to the database server, and find this metric 
for the database volume by running iostat:

What’s happening here?



Scenario 2 
We suspect very high write operations on the database, and decide to 
print MySQL’s processlist. (`mytop -d mysql`). We see a large 
quantity of statements that look like this:

   12514 drupal web-123 drupal    3     Query INSERT INTO watchdog 
(uid, type, message, variables, severity, link, location, referer, hostname, 
timestamp) VALUES ('0', 'stuff

What did we discover?



Scenario 2 
● The site had the dblog module enabled.
● In situations where a site is emitting a lot of code errors, 

massive write operations will happen to the database, saturating 
the underlying storage.

● Solution: don’t use the dblog module. Use syslog instead.



Scenario 2 
● The site had the dblog module enabled.
● In situations where a site is emitting a lot of code errors, 

massive write operations will happen to the database, saturating 
the underlying storage.

● Solution: don’t use the dblog module. Use syslog instead.



Let’s Recap!



Let’s Recap!
● Troubleshooting infrastructure is accessible to mortals
● The USE Method
● Hardware Resources
● Software Resources
● Process Introspection
● PDCA as a process for improving performance



Q/A



What did you think?

Locate this session at the DrupalCon Nashville website:

http://nashville2018.drupal.org/schedule

Take the Survey!

https://www.surveymonkey.com/r/DrupalConNashville

http://nashville2018.drupal.org/schedule


Join us for
contribution sprints

Friday, April 13, 2018

9:00-18:00
Room: 103

Mentored 
Core sprint

First time
sprinter workshop

General
sprint

#drupalsprint

9:00-12:00
Room: 101

9:00-18:00
Room: 104



Media Credits
● The Fellowship of the Ring (New Line Cinema)
● Ghost In The Shell (Kodansha, Bandai Visual, Manga Entertainment)
● Hackers (United Artists)
● Zelda II: The Adventure of Link (Nintendo)
● The Princess Bride (Act III Communications)
● Superman (Max Fleischer Studios, Paramount Pictures)
● PDCA Diagram (Karn G. Bulsuk, http://www.bulsuk.com)



Amin Astaneh
T: @aastaneh
IRC: amin
amin@aminastaneh.net


