
What’s the fuss
with all this

Welcome!

We’ve got a lot to cover, so let’s get going.

Hi, I’m Blake.

I’m a Developer and Trainer on the Drupalize.Me team.

We have the largest collection of Drupal training anywhere, check us out.

Lullabot is an interactive strategy, design, and development company.

GAME PLAN

• What’s the problem?
• Backbone.js
• Angular.js
• React.js
• Questions?

I spent a bunch of time last year attending events in the node & javascript community.

I just have to plug a couple of them quickly, because a tech conference with camping is AWESOME.

The last night at JS.Conf, our party included a bouncy castle, dunk tank,

and I got to put on those giant boxing gloves and punch Eric Duran…

It was a good time.

so what?

Okay, what’s this have to do with anything?

A couple of sessions either inspired this one,

or provided the source material to shamelessly steal from.

Both of these sessions are on youtube, and I definitely recommend checking them both out.

https://drupalize.me/blog/201504/backbonejs-and-underscorejs-drupal-8

Meanwhile in the Drupal community…

I wrote a blog post about this about a month ago, but Backbone was committed to Drupal 8 ~3 years ago now!

So, like when jQuery was added, we have a new tool to take advantage of.

Front-end development moves fast though, How does this compare with newer frameworks that have hit the scene?

https://drupalize.me/blog/201504/backbonejs-and-underscorejs-drupal-8

I think it’s important to understand the communities we’re talking about here.

I noticed on the carpet this morning that drupal.org launched in 2001.

I started using Drupal almost 10 years ago, at a time where contrib consisted of about 350 modules and it was possible to try them all.

This screen cap was taken yesterday, and as a community we’re just over 30K Modules!

It’s worth noting that this number includes sandbox projects, but still…

I don’t know about you, but that blew my mind a bit.

and we’re just under 17K full projects

Meanwhile, in 2009 npm was released and has became the de-facto home for javascript libraries and frameworks.

147K packages…

Since 2009.

In 6 years, the javascript community has shared almost 5x as much code. Not apples to apples, but

Wow!

So where did all this come from?

Back in the old days…

(And by old days I mean 1996)

MapQuest launched to help us get directions from the internet.

As far as interactions go, this is where we came from:

 a stylized series of forms with full page reloads on every click

Along comes Ajax in 2004/5 based on some work from google maps, gmail

While we’re still doing AJAX -> it’s often just naive html replacement happening via background requests

it’s basically just a "transformed version of a series of forms” happening with background processing.

2010 comes along and backbone is released.

Model-View-Presenter pattern.

Allows developers to use traditional Object Oriented data modeling techniques in the browser to improve code organization

and make it easier to keep the client and server in sync with all the background AJAX requests that are happening in more complex applications.

Now, it’s kind of a running joke how many front-end frameworks their are to choose from.

• Models
• Views
• Routing
• RESTful API access

What’s a Framework?

What actually constitutes a framework though?

Some form of data modeling

Some sort of presentation layer

Some way to handle state / urls / navigation

A way to make requests for additional data to display on the page.

todomvc.com is a pretty handy way to compare frameworks and grok what they’re trying to do.

The code samples we’re going to walk through come from this project, and they’re linked to

and available on github if you want to revisit them later.

Here’s what the app actually looks like. While they’re all identical, this one is actually powered by “vanilla” jQuery.

We’ve using local storage for a todo list, All the basic functionality is here… Add, Delete, Filter, Log, etc…

We’ve already mentioned it a few times, and since it’s in Drupal core and this is Drupalcon Let’s start with Backbone.js

“What would the ideal
[client side] webapp API
 look like?”

- Jeremy Ashkenas

"Get the **truth** out of the DOM"

(finding & parsing data out of the page for business value)

"the DOM is a user interface not a data source”

Backbone.JS - JSConfUY 2014 https://www.youtube.com/watch?v=UAl_N62gKmM

MV*

Rather than the (perhaps?) familiar MVC Pattern,

Backbone is based on the Model - View - Presenter paradigm

What exactly does that mean?

User input triggers events from the View class. These bubble up to the model.

Then, when the model changes (perhaps after an API request returns data), that change event bubbles back out to the view layer triggering a re-rendering of the view
template.

M

Let take a look at a Backbone Model in our example Todo app

Backbone models extend a base class Backbone.Model.

Inside of your new base class you then set up defaults, and add any rich methods needed to provide functionality to the model. OOP 101…

V

So what does the View layer look like?

Again, we’re extending a base view class Backbone.View.

We’re passing in the template used to render this view, the DOM events we want to bind to and adding listeners to trigger custom methods based on specific types of
user input.

We also have to provide a render method since the default implementation is a no-op.

This method renders the view template from model data, and updates this.el with the new HTML.

(as a quick aside, returning this at the end of the method allows for chaining)

*

Presenter / Controller / Whatever glue pieces are needed to hold things together…

Observer Pattern

Key value observation -> cascading effects depending on how models & collections are set up.

(we’ll revisit this later)

Who uses
Backbone.js?

A little closer to home…

The tonight show starring Jimmy Fallon is actually a decoupled Drupal site, using backbone to render the front-end. Built by the NBC team right here in Los Angeles, with
some assistance from Lullabot.

Switching gears, next up is Angular.js

originally targeted at non-devs

the way html (and the browser)_should_ work (according to angular developers, at google)

SPA

Single Page Application framework pain points

Declarative programming — ie: template driven

Data Binding
& Directives

The two core features of Angular.js we’re going to take a quick look at are it’s two-way Data Binding

and something called Directives

https://docs.angularjs.org/guide/databinding

Angular requires us to build a lot of the application’s structure into our templates.

The controller then loads data from our Models, and Angular handles keeping the models and views in sync.

The result is that our templates are continuously reloaded, and update immediately to data changes.

(performance implications of dirty checking)

https://docs.angularjs.org/guide/databinding

Here’s the angular template for our todo app.

You can see addTodo() is called as a new todo item is submitted, and the ng-repeat directive loops over a variable called todos

to print out our list of tasks.

Here is the portion of the todo controller responsible for adding a new todo item.

It does this by inserting it into the store object (which is mapped to $scope.todos elsewhere)

Here is another portion of the controller, which sets store.todos = $scope.todos.

This $scope.todos value is what gets passed to the template we looked at earlier.

Directives

a DSL for your HTML

Directives allow us to define our own custom HTML elements, with complex behavior.

One example we saw in the TODO app was ng-repeat. This directive loops over it’s contents for each data item that is passed into it. Let’s take a look at another (simpler)
example.

<share-buttons link=“http://example.com”>
</share-buttons>

We’re going to build a simple directive that takes this new HTML tag, <share-buttons> and

provides links to our favorite social sites.

http://example.com

Here’s all the code necessary to register an Angular directive. There’s some name normalization going on,

here it’s camelCase whereas in the html it’s hyphenated.

We’re also setting up a link variable, which will be available in our template, and passing in a template file

The template file contains the markup that Angular will use to replace our Directive during compilation.

In this case we’re dropping in links to Facebook, Twitter and Google Plus, formatted for easy sharing.

And here’s the final output on the site using the new <share-buttons> HTML tag.

Angular 2.0 is coming, sometime?

It’s really quite different, and rapidly evolving. It looks like they’ll be doing away with a bit of two way data binding in order to improve the performance of dirty checking.

Who uses
Angular?

The weather channel (a drupal site)

MSNBC, another Lullabot client.

2013. Quite a bit different from the others.

Just the V

Because it’s really just a templating library by itself.

React uses something called Components to handle rendering portions of a page.

The components each have a render method, that defines their output.

Here’s the main component for the Todo sample app.

Given a model, it drops the TodoApp component into the DOM element with the ID of todoapp

The ToDo item components’ render method, then contains the actual markup displayed for each todo item as well as the input form.

Within the component we map actions to component methods responsible for handling the user interaction.

then, in the event handler we use setState to update the data model of our component.

The components’ render method is using this same state to display the UI, and react ensures it’s re-rendered when there has been a data change.

Let’s talk a bit about a related technology / approach:

Something called Flux

http://www.infoq.com/news/2014/05/facebook-mvc-flux

In a traditional MVC framework, like backbone or angular, it can be difficult to reason about the cascading

effects of data changes across models.

http://www.infoq.com/news/2014/05/facebook-mvc-flux

https://facebook.github.io/flux/docs/overview.html

In flux, the event and data flow is unidirectional.

https://facebook.github.io/flux/docs/overview.html

https://facebook.github.io/flux/docs/actions-and-the-dispatcher.html#content

Contrast this approach to what we saw with Backbone.

In this case, data is only moving one direction making keeping things in sync a much easier task.

This comes at the expense of completely re-rendering components. It turns out, doing that is pretty performant thanks to something React uses called the Virtual DOM.

https://facebook.github.io/flux/docs/actions-and-the-dispatcher.html#content

Who uses
React?

Initial versions of React were developed by the folks at Instagram.

I mentioned that React is constantly re-rendering entire components based on data changes.

It’s working well enough for these folks.

And another, recently launched decoupled drupal site (that I helped out with earlier this year).

Other frameworks…

Read this https://www.lullabot.com/blog/article/choosing-right-javascript-framework-job!

Questions?

blake@lullabot.com
@blakehall

Also come find me at the Drupalize.Me booth this afternoon. #407 & 411

mailto:blake@lullabot.com

WHAT DID YOU THINK?
EVAULATE THIS SESSION - LOSANGELES2015.DRUPAL.ORG/SCHEDULE

THANK YOU!

http://losangeles2015.DRUPAL.ORG/schedule

