

Test all the things!
Get productive with automated testing in Drupal 8

Sam Becker

Sam152 on drupal.org
Back-end Drupal dev for PreviousNext
Core contributor
Author of 50+ contributed projects

WHO AM I?

http://drupal.org

WHO ARE YOU?

Developers seeking information on the
"big picture" in Drupal testing.

May not have written many tests before.

First Principles

What is a test?
Code written to assert a series of constraints
about some other bit of code.
Essential for complex software.
There are many forms of testing (we'll be
covering this later).

The UUID generator is our "system under test".

Simple Example

Why?

Catch bugs.
Confidence to refactor.
Proof to reviewers that something works as
advertised.

PHPUnit

PHPUnit

Used for all testing in Drupal core.
Trusted by many frameworks and projects in the
PHP community.
Lots of tools, extensions and support.

PHPUnit Test Anatomy

Annotation based metadata

Extends some core testing
base class

Modules to enable

Sets up the preconditions
for each test method.

Your test code goes in here.

@dataProvider

An example of the @dataProvider syntax

Use the same test method, but with different
variables.
Allows you to quickly add more test cases.
Requires tests to be written in a more generic
fashion.

@see Thursday

A Recent History

Simpletest

simpletest UI

Tool introduced into Drupal 7.
Did not gain widespread adoption.
Still used to test D7 contrib.

Superseded by PHPUnit in D8.
Still simpletest tests in D8 core.

The Future!

See the "phpunit initiative" tag in drupal.org.
Help port simpletests to PHPUnit.
300 tests left to port on last count.

Porting these tests will mean consistency across
core.

http://drupal.org

High Level

Unit Testing

Tests one individual unit in
isolation.
Low level of abstraction,
interacting directly with
classes/functions.

Integration Testing

Tests multiple units working
together.
Mid level of abstraction,
working within a bootstrap.

Functional (UI) Testing

Tests system as a whole,
like a user would.
High level of abstraction,
knows nothing about the
internals of the application.

The Pyramid

The testing pyramid

Lots of Unit tests

Some Integration Tests

Few
UI Tests

Well tested applications have a mixture of these
kinds of tests.

An Example

UI Test

Create a user with access to checkout.
Create a product with weight 12KG.
Log in the test user.
Visit the product page and add to cart.
Visit the checkout.
Fill in address information and submit.
Assert the shipping page contains "$14.95".

Runs in about 45 seconds.
Must be updated every time login, product
pages and checkout changes.

Unit Test

Create an instance of ShippingPriceCalculator.
Verify return of "calculate" is 14.95 with
postcode "6160" and "12KG".

Runs in 10ms.
Resilient to changes outside the unit.
Encourages testing many scenarios.

Scenario: Are shipping prices correct.

A Counter Example
Scenario: Can the user checkout?

Impossible to unit test, no single unit is
responsible for checkout.
Hugely valuable, we need to make sure this
always works.

JavaScriptTestBase

JavaScriptTestBase
Highest level of abstraction.
UI testing with a browser, executing JavaScript.
New capability in Drupal 8 testing.
Very slow.

Mink: Pluggable Drivers

Example of a JavaScript test

Learn one API.
Pick the tool for the job.
Swap drivers without rewriting your test code.

Getting Productive

Mink in action

getSession() like "window" in JS.
getSession()->getPage() like "document" in JS.
assertSession()
...and a bunch of Drupal helpers:
drupalPostForm(), drupalGet(), drupalLogin().

Screenshots generated from a browser test

Example Output

Nondeterminism

Assume you need to wait for anything
asynchronous.
AJAX requests are the repeat offender.

Also known as the "random fail"

BrowserTestBase

BrowserTestBase
Same API as JavaScript test base.
Doesn't execute JavaScript during the test run.
Runs faster, less prone to random fails.
No external dependency on PhantomJS.

Should be used for all UI testing that doesn't
require JS to execute.

setUp
BTB/JTB start from scratch.
Try to isolate tests, make them totally
deterministic.
Other testing tools just point to an installed site
with no fuss.

Pre-provisioned Environments
Both BTB/JTB can be adapted to test pre-provisioned
installed sites.
Skip creating production-like conditions in setUp.
Useful for testing heavily interdependent components:

See https://www.drupal.org/node/2793445 for work in
progress.

Site building.
Complexities in a theme.
Intersection of modules and custom code.

DB Sync/
Site Installation

BTB/JTB: Skipped setup
for existing site

https://www.drupal.org/node/2793445

Why?
Lends itself to bespoke or custom site builds.
Use one set of tools for testing.

Testing without isolation can be brittle.
Harder to maintain, state bleeds between test-
runs.

Cons

KernelTestBase

KernelTestBase

KernelTestBase, look at that speed!

Drops the notion of a web browser during
testing.
Starts with a minimal Drupal Drupal installation.
Test must specify which parts of Drupal are
installed.
Fast compared to BTB/JTB.

Required Setup

Typical KernelTestBase setup method

Requires each module, module configuration,
database table or entity type to be setup during
the test.
Using real dependencies, asserting the
behaviour of one or more components working
together.

Simple Example
Scenario

A simple field formatter.
Returns a #theme => fancy_text with the
field value inside.

Subsystems working together:
Entity/field API (storing the data).
Plugin system (for the formatter).
Module system (does our fancy_formatter
module actually install etc).

UnitTestCase

UnitTestCase

The slowest unit test in core.

Super fast!
Lowest level of abstraction in testing.
No access to a browser, database or bootstrap.
Instantiate your system-under-test directly.
Create exact pre-conditions.
Test lots of scenarios in very little time.

An Example
Test doubles for dependencies.
Asserts the positive and negative test cases.
A @dataProvider could be added with more
test cases as required.

Testing and Design

Clearly reveals all dependencies (you have to
instantiate or mock them), encourages
information hiding.
Good reference for your public interface, clearly
see how dependent classes will interact with
your class. Does it make sense?

Test Doubles: Know your lingo

Dummies
Implements an interface but returns NULL for
every method.

Stubs
Returns user-specified pre-canned responses to
method calls.

Mocks
Asserts specific method calls made to a
dependency.

All are test doubles, the notion of swapping your
dependency for a test-specific implementation.

Unit Test Code Smells

Too many test doubles
Perhaps class has too many responsibilities and needs to be spit up.
Perhaps less information can be injected.

Testing the implementation
Avoid asserting very specific calls to dependencies unless necessary.

Stubbing the system under test
Why couldn't the state of the object be setup? Too complex?

Tools & Runners

PHPStorm test runner

PhpStorm Test Runner

Limitations

No JS Unit Testing?

Lots of solutions out there for unit testing
JavaScript.
Helpful for any complex JS code.
Not compatible with core or Drupal CI.

One possible solution: Jest

Three Easy Steps

Setting up web pack for JS unit testing

Split your JS into individual units.
Test those units.
Integrate tested code into your Drupal-y JS.

Webpack allows you to split your code into
individually tested modules.

Example JS Module + Test

Test in D7 contrib: d.org/project/webform_date_restrictions

https://www.drupal.org/project/webform_date_restrictions

Using the Module

Snapshot Testing

Updating a snapshot with Jest

@see core

https://www.drupal.org/node/2702747 - Issue to
track including JavaScript unit testing in core.

https://www.drupal.org/node/2702747

Bringing it all together

Continuous Integration

Build history on a complex Drupal 8 project.

Invest in a CI for your private projects.
CircleCI and Gitlab have great free tiers to dip
your toe in.

Discussion & questions

JOIN US FOR
CONTRIBUTION SPRINT

Friday, September 29, 2017

First time
Sprinter Workshop

Mentored
Core Spint General sprint

9:00-12:00
Room: Lehgar 1 - Lehar 2

9:00-12:00
Room: Stolz 2

9:00-12:00
Room: Mall

#drupalsprints

WHAT DID YOU THINK?

Locate this session at the DrupalCon Vienna website:
http://vienna2017.drupal.org/schedule

Take the survey!
https://www.surveymonkey.com/r/drupalconvienna

http://baltimore2017.drupal.org/schedule
https://www.surveymonkey.com/r/drupalconbaltimore

