

The potential in Drupal 8.x and how to realize it
Angela Byron, Gábor Hojtsy

1. Drupal 8:
The dawn of new possibilities

Making big
changes in 8.x:
It's possible!

Intro to semantic versioning

We are here

Predictable

Improvements
every 6 months

Incentive to
contribute

Backwards-
compatible

2. What to improve?

"Top-down" goals (from committers)

Migrate UI

Configuration
Management

Frontend testing

Media

Blocks and layouts

Workflow

"Bottom-up" goals (from community)

BigPipe

Contact for basic
web forms

Twig

Picture support

Admin style guide

Improved entities

www.drupal.org/core/roadmap

3. But… how?

Pain points from Drupal 7 and Drupal 8.0.x
● Bikeshedding, especially of user-facing changes
● Work hard on something, may still get rejected
● Directional feedback vs. standards nitpicks
● Don't validate ideas until *after* shipping; now

too late to fix
● Giant core patch vs. sandbox vs. contrib vs. core

1. Iterate quickly and cheaply on ideas
2. Clear sign-off points to avoid wasting time
3. Involve the right stakeholders at the right time
4. Gain visibility for proposals from committers
5. Reduce barriers to entry into core for new ideas
6. Clear visibility of priorities for the community

Ideas for improvement

How *other* people improve products

Possible implementation for Drupal core

Proto-
type

Core
(experim

ental)

Core
(stable)Build Idea

Plan

Refine

Spec Ship Gates

Note: This is *just* a proposal
...about how to make proposals. ;)

Your feedback needed!

Idea

Plan

Proto-
type

1. "Idea" is just a few sentences (lean UX-style)
2. Get sign-off / rejection right away (product management)
3. To get to next phase, formulate a "Plan"

Plan template (beta)

https://www.drupal.org/core/initiative-proposal-template

For compelling 8.x minor releases...

1. Prototype iteratively, as cheaply as possible
2. Validate prototype with real users
3. Once validation occurs, the prototype becomes a spec
4. Now, No. More. Bikeshedding. ;)

Proto-
type Build

Spec

Who to talk to? At least some of these folks.

Committers
Product

Managers
Framework
Managers
Release

Managers

Subsystem
Maintainers

Shortcut module

...

Field system
Queue system

Topic Maintainers

Usability

Accessibility

Performance

Testing

DocumentationBlock module

MAINTAINERS.txt && d.o/project/governance

Initiative
Coordinators

Content Workflow

...

Web Services

Media

Multilingual

1. Now, spec becomes core patch
2. However, most "core gates" (except MVP testing! :)) are

bypassed
3. Initially goes in as "Experimental" module
4. Bikeshedding opens again after shipping. ;)

Core
(experim

ental)
Build

Ship

Experimental modules

Pros Cons
Already in core

Can be less stable

Familiar core process

Easy for end users

Iterate quickly

Cannot commit directly

Needs reviewers

System-wide changes
not possible

Risk of lingering
technical debt

1. Once iterated on a few times, move to "proper" core module.
2. This requires all sign-offs, core gates, etc.
3. Radical refinements no longer possible without a new

experimental module.
4. Enjoy!

Core
(experim

ental)

Core
(stable)

Gates

Summary
1. Get sign-off/rejection *before* doing tons of work
2. Validate direction with real-world data vs. bikeshedding
3. Make it cheaper/easier/faster to improve core all around
4. Jump through the right hoops at the right time
5. …
6. Profit! :P

4. What do you think?

Discuss!
Are the pain points addressed?

Balance of bureaucracy vs. unpleasant surprise?

How do we get ideas on the roadmap?

What about the implementation details?

Join us for Sprints

First-Time Sprinter Workshop - 9am-12pm in Room 271-273

Mentored Core Sprint - 9am-6pm in Room 275-277

General Sprints - 9am-6pm in Room 278-282

Friday, May 13 at the Convention Center

So How Was It? - Tell Us What You Think
Evaluate this session - https://events.drupal.org/node/9866

Thanks!

