
Advanced Configuration Management

with Config Split et al.

Fabian Bircher fabian@nuvole.org

web: nuvole.org       twitter: @nuvoleweb



Italy Belgium Czech Republic

✈  
Our Distributed Team

Nuvole: a 100% Drupal company with a distributed team in:



👍  
Our Clients

International organisations

Institutions

Fast delivery: several developers working simultaneously on the

same project

Frequent configuration changes: need for safe updates



Chapter 1

➡  
CM in core

Can I develop/test configuration on a development copy and keep

the production site online all the time?

Can I export configuration changes from development and import

them into production?



  
Active Con�guration Storage

*

➡ Chapter 1: Configuration Management in Drupal core



  
Synchronise Con�guration

config export

config import

➡ Chapter 1: Configuration Management in Drupal core



⇆  
Deploy Con�guration

➡ Chapter 1: Configuration Management in Drupal core



❓  
Problem solved?

Configuration Management works perfectly for its use case.

But the reference use case scenario is very narrow.

In real life we need to cover many more scenarios.

➡ Chapter 1: Configuration Management in Drupal core



Chapter 2

🎁  
Install a site from existing

con�guration



  
Bootstrapping production

Deployment is nice but how do get production up and running for

the first time?

🎁 Chapter 2: Install a site from existing configuration



🎁  
Con�guration Installer

Usually running the installer creates a "new site".

The Configuration Installer is an installation profile that takes over

the Drupal installer and allows sites to be created from existing

configuration.

It is an installation profile and needs to be put in /profiles in

order to work.

Should be on every site (and in core)

🎁 Chapter 2: Install a site from existing configuration



🎁  
Con�guration Installer UI

🎁 Chapter 2: Install a site from existing configuration



🎁  
Con�guration Installer in core

Allow a site to be installed from existing configuration:  

Allow a profile to be installed from existing config:  

🎁 Chapter 2: Install a site from existing configuration

https://www.drupal.org/node/1613424

https://www.drupal.org/node/2788777

https://www.drupal.org/node/1613424
https://www.drupal.org/node/2788777


Chapter 3

  
local con�guration override

Can I have verbose error logging enabled on the development

copy only?

Can I customize API keys in production without committing them?



📝  
Overriding

In development, it is convenient to have a different configuration

than on the production site.

Examples: different error reporting, different API keys for services,

different site name or site mail.

These customizations are not to be exported.

Not covered by the reference use case.

 Chapter 3: local configuration override



📝  
Using $config

The $config array allows run-time overriding: configuration is still

there, but it gets overridden.

Example: add to settings.php (or settings.local.php)  

in the development enviroment:

This enables verbose error logging on that instance.

 Chapter 3: local configuration override

$config['system.logging']['error_level'] = 'verbose'; 



📝  
Con�g Override

*

 Chapter 3: local configuration override



📝  
A satisfactory solution?

$config covers our need for differentiating configuration between

environments but...

You can only alter existing configuration.

You can't add new configuration using $config

You can't completely "unset" existing configuration using $config

You can't override which modules are installed.

You can't override the color of Bartik and other details.

 Chapter 3: local configuration override



Chapter 4

  
Con�g Filter

How can we do more than configuration overrides?



  
CM in Core

*

 Chapter 4: Config Filter



  
with Con�g Filter

*

 Chapter 4: Config Filter



  
Con�guration Filters

Filters can modify the data for every operation.

Filters are plugins

Plugins are sorted by weight and applied one after the other

Plugins can be inactive and skipped

6k+ installs, top 100 modules, 0* bugs

 Chapter 4: Config Filter



  
Con�g Filter

 Chapter 4: Config Filter



✂  
Con�g Split

 Chapter 4: Config Filter



👻  
Con�g Ignore

 Chapter 4: Config Filter



Chapter 5

✂  
Con�g Split con�guration

What do the different configuration options do?

What is the difference between a complete split and a conditional

split?



✂  
Static settings

Folder: Path to the secondary config storage

Weight: Determines the order in daisy-chained filters

Active: To use the split or not to use the split.

✂ Chapter 5: Config Split configuration



✂  
Complete Split (blacklist)

Modules: will be removed from core.extensions when exporting

Config items: automatically includes configuration which depends

on modules

Additional config: text area for use with * wildcards

✂ Chapter 5: Config Split configuration



✂  
Conditional Split (graylist)

Config items: select the configuration  

will not be deleted on export

Dependent config: add config that depends on the listed ones

split when different: useful when using wildcards

✂ Chapter 5: Config Split configuration



✂  
CLI commands

csim/csex

without argument: replacement for drush < 8.1.10 and console

with split machine name: import/export only that specific split

✂ Chapter 5: Config Split configuration



✂  
Example

Not listed: A

Complete Split: B

Conditional Split: C

✂ Chapter 5: Config Split configuration



✂  
Example

✂ Chapter 5: Config Split configuration



Chapter 6

🚫  
Environment speci�c

modules/con�g

Can I have development modules enabled on a development

environment but not deploy them to the production site?



✂  
Con�guration split

List modules to split off

Add environment specific configuration

Override per environment to make split active

🚫 Chapter 6: Environment specific modules/config

$config['config_split.config_split.dev']['status'] = TRUE; 



✂  
Environment speci�c

permissions

Use 

Config Filter Plugin

Add/remove permissions during import/export

Role Split can be overwritten split or ignored per environment

🚫 Chapter 6: Environment specific modules/config

Config Role Split

https://www.drupal.org/project/config_role_split


Chapter 7

 👽 👻  
Con�guration Management with

git

Can two or more developers work simultaneously on the same

project?

How do I ensure that my work is not lost?

Can I assume that Git will always do the right thing when merging?



Git to the rescue

Configuration Management is designed to share configuration

between different environments.

Configuration is exported to text files.

And for text files we have Git!

 👽 👻 Chapter 7: Configuration Management with git



Working as a

 👽 👻  
Team of developers

Share a Git repository for both code and configuration.

Install site starting from initial configuration.

Adopt “A successful Git branching model” (cit.)

 👽 👻 Chapter 7: Configuration Management with git



  

First developer:

Initialise repository.

Installs site locally.

Exports configuration to sync.

Commits and pushes to shared

Git repository.

👽 👻  

Other developers (and prod):

Clone code.

Have config_installer profile

available.

Install site starting from

exported configuration.

 👽 👻

Project bootstrap

 👽 👻 Chapter 7: Configuration Management with git



  

First developer:

Own branch: 

checkout -b feature-a

(code, code, code...)

Commits and pushes to shared

Git repository.

👽 👻  

Other developer(s):

Own branch: 

checkout -b feature-b

(code, code, code...)

Commit and push to shared Git

repository.

 👽 👻

Parallel development

...but careless merge is dangerous and problematic.

 👽 👻 Chapter 7: Configuration Management with git



Collaboration issues

A careless workflow may result in:

Losing all uncommitted work.

Accidentally overwrite work by others.

A configuration that looks OK at first sight but that is actually

invalid for Drupal.

 👽 👻 Chapter 7: Configuration Management with git



📦  
The safe sequence for sharing

1. Export configuration: drush cex

2. Commit: git add && git commit

3. Merge: git pull

4. Update dependencies: composer install

5. Run updates: drush updb

6. Import configuration: drush cim

7. Push: git push

 👽 👻 Chapter 7: Configuration Management with git



📦  
If you do it wrong...

Import before Export: Deletes your work, no backup.

Merge before Export: Export deletes previous work, solved by git.

No updb or after cim, will be disallowed, database might be broken.

No composer install, may not have all the updated code.

Merge before Commit: Manual labour on conflicts.

Forgotten Import: Next export will not contain merged config,

more difficult to solve in git.

 👽 👻 Chapter 7: Configuration Management with git



📦  
The safe sequence for updating

1. Update code: composer update

2. Run updates: drush updb

3. Export updated config: drush cex

4. Commit: git add && git commit

5. Push: git push

 👽 👻 Chapter 7: Configuration Management with git



📦  
Update DB before con�g import

update hooks are for fixing the database. See 

New with proof of concept module :

Or in core: 

 👽 👻 Chapter 7: Configuration Management with git

#2762235

Config Import N

function hook_pre_config_import_NAME(&$sandbox) { } 
function hook_post_config_import_NAME(&$sandbox) { } 

#2901418

https://www.drupal.org/node/2762235
https://github.com/bircher/drupal-config_import_n
https://www.drupal.org/node/2901418


Breaking con�guration with Git

Setup: Installed standard profile

Developer A on branch feature-a deletes Tags from 'Article'.

Resulting configuration change: 2 files are removed (field instance

and field storage)

Developer B on branch feature-b adds Tags to 'Basic page'.

Resulting configuration change: 1 file is added (field instance)

Git will happily merge feature-a and feature-b into develop

The resulting configuration is invalid:

Tags has a field instance but no storage.

 👽 👻 Chapter 7: Configuration Management with git



Chapter 8

☢  
Con�g changes on production

How to deal with changes to configuration on the production site?



💀  
Changes on production

Imagine the ideal situation:

Configuration is correctly exported, versioned and deployed

Development team adopts a solid GIT branching model

BUT...

Configuration on production is changed  

by your Geeky Client™ overnight, without notice.

☢ Chapter 8: Config changes on production



🔒  
Option 1  

Lock con�guration on
production

Don’t allow config changes on the production site if ever possible by

installing the config_readonly module.

Note: add this to settings.php in production:

☢ Chapter 8: Config changes on production

$settings['config_readonly'] = TRUE; 



✂  
Option 2  

Con�guration Split

Review changes done by the client on production and agree what

to keep → conditional split.

Export production changes via drush config-split-export client

to ../config/client

Pull new configuration: business as usual

Deploy configuration changes via drush cim: business as usual

Configuration is imported from both ../config/sync and

../config/client



✂  
Option 3  

Con�g Ignore

Add config names/keys allowed to change to ignore config.

Pull new configuration: business as usual

Deploy configuration changes via drush cim: business as usual

Configuration is imported from both ../config/sync and the active

config.

☢ Chapter 8: Config changes on production



Chapter 9

  
Shared con�guration

Re-using configuration?

Multisite configuration?



  
Features

Bundle configuration for re-use on other sites

Site then owns configuration, feature update unsolved.

Great for starter-kit to optionally add more features

 Chapter 9: Shared configuration



✂  
Con�g Split for multisite

Shared splits or shared sync with site specific splits

Join  on Thursday

 Chapter 9: Shared configuration

BOF

https://events.drupal.org/vienna2017/bofs/sharing-configuration-multisite-environment-drupal-8





