
The Why And How  
of Front-End Architecture

Feel the rhythm, feel the rhyme,
get on up, it’s front-end time

Who are you people
anyway?

• Wes Ruvalcaba  
@wesruv

• Carwin Young  
@carwin

• Sally Young  
@justafish

Strategy, Design and Development

Front End Architecture
[frənt end ˈärkəˌtek(t)SHər]
noun
The design for how to work on the Front End of a
project. A strategy that helps developers implement
and collaborate; and what standards, libraries and
tools are being used.

The Byproduct is  
(something like)

• Coding standards

• Documentation, Style Guides, etc.

• Implementation Guidelines

• File Organization

• Tools for Building/Testing/Processing

• Included Libraries, Plugins, etc

😄 😰

Organization & Planning

There is no logic in this place

Some kind of plan is better
than no plan at all.

Where should I put:
• This fancy new template file?

• This Sass code?

• Custom JavaScript?

• JS Library?

So organized

How to plan

Things to organize:
• Templates

• Preprocessor files (Sass / Less)

• CSS Properties (masochists only)

• JavaScript libraries, helper functions, etc…

• Literally whatever else you have going on

EVERYTHING.

HTML, Templates, and
preprocess

You can organize this!

Do these functions or files rely
on code provided by a module?

• On a large project, you should probably
keep it with that module

• On a really small project, it might be better
all in one place like the theme

Small Decisions Eat Lots of
Time

while $decisions < $over_engineering {
 $developer_sanity++;
}

JavaScript
You already know this

CSS
As front-endy as it gets

–Me, earlier in this talk

“Some kind of plan is better than
no plan at all.”

CSS Methodology Types
• Component - highly modular, discrete chunks of

CSS / Markup

• Utility - the lego version of CSS, individual
classes that do very few things (think .underline,
or .red)

• Hybrid - a mix of the two  
(good for the environment)

• WOULD YOU RATHER MODIFY MARKUP?  
Utility Methodologies++

• WOULD YOU RATHER MODIFY STYLES?  
Component Methodologies++

• WANT TO PLAY IT SAFE? 
Drupal 8 already has standards. Use
those.

There is still no logic in this place

Set aside time for  
architectural decisions

& keep them simple

–Someone Great, earlier in this talk

“Some kind of plan is better than
no plan at all.”

Build tools

Why Adopt Build Tools?
What are the advantages?

Adds a layer of abstraction
• Work in compiled languages

• How you work ≠ how code is delivered

• Code can be DRYer and compartmentalized

• Can help bridge gap between skill levels

Automate
tasks

Computers love repetitive
menial tasks!

• Linting

• Repetitive command line tasks

• Minification

• Compiling

• Browser-prefixing

• Reloading the browser when a file
changes

Task Runners
e.g. Grunt & Gulp

Common front End Task
Might be…

• Compile

• Autoprefix

• Minify

• Save the end product

• Reload browser

Caution  
all who enter

If you’re new to build tools
• There’s a learning curve

• Getting your first setup will come with
bumps

• The documentation for some isn’t great,  
look for articles

General Warnings
• There will be (some) maintenance cost

• Don’t Over-engineer

• Beware long build times! 
(But this can almost always be addressed)

• Front End Build Tools are still young, there will be
change, but it is calming down

• Can increase developer specialization

How do we decide when we
should (not) use Build tools

Small teams / Projects
• Set up time can be prohibitive

• It can hamper make cross-functional team
members

• BUT if you have a common set of problems
that build tools can solve, it can be really
helpful

Larger Teams / Projects
• Build tools really help building for scale in team and code base

• Helpful to have a point person for maintenance

• Make sure it’s adding value, not frustration

• Watch for long build times

• Requiring a lot of command line knowledge

• Document, Document, Document!

Package Managers

• What does this do?
• Where does it come from?
• What version is it?

Package Managers
Used for external
dependencies e.g.
JavaScripts, CSS
Frameworks

Downsides

Testing
• Visual Testing including Regression Testing

• Unit tests

• Code sniffing, linting etc

Front End Frameworks
e.g. Bootstrap, Susy Grids, Yeti, Foundation

Benefits
• A lot of testing, grunt work, and coding already done

• Great Documentation done

• A lot of support

• Built to help devs of all Front End skill levels build
interfaces

• A lot of FE Arch decisions made for you

Downsides
• Stick to the design they give you… or else!

• Code bloat could be an issue

• Specificity wars

• A lot of FE Arch decisions made for you

When might you adopt a
framework?

• Pragmatism over idealism; crunches in time,
team abilities, QA or other factors

• Supporting a lot of other devs that aren’t as
front end savvy

TL;DL
Some kind of plan is better than no plan at all

Build tools are good… (probably?)

Package managers… yes please!

Testing is good… but people are good too!

Frameworks - use at your own risk

Q & A

