
Mike Miles | Drupalcon Nashville 2018

events.drupal.org/node/20624

 / ____/___ ____ ___ ____ ____ ________ _____
 / / / __ \/ __ `__ \/ __ \/ __ \/ ___/ _ \/ ___/
/ /___/ /_/ / / / / / / /_/ / /_/ (__) __/ /
____/____/_/ /_/ /_/ .___/____/____/___/_/
 /_/ Composer 101

https://events.drupal.org/nashville2018/sessions/composer-101

About Me

Work: Genuine (wearegenuine.com)

Podcast: Developing Up (developingup.com)

Online Handle: mikemiles86 (@mikemiles86)

https://www.wearegenuine.com
http://www.developingup.com
https://www.twitter.com/mikemiles86

PHP projects that have a few dependencies may be able simple to maintain. But
complex projects with many layers of dependencies, frustrate developers and

waste project time on managing those dependencies.

Security Update!!

Every project has limited time & budget

The more project time is spent on maintaining 3rd party code, the less time
there is available to focus on building what will deliver project value.

Composer
getcomposer.org

Composer is a PHP project dependency
manager, that handles 3rd party

project code, so that the developers
do not have to.

Adding a few files and utilizing a few commands, composer can be added to any
PHP project. Composer takes care of 3rd party code dependencies, installation

and maintenance.

Composer project structure

Every Composer based project has a composer.json file, composer.lock file, and
vendor director. Optionally it can contain the composer executable.

root/

[composer.phar]

composer.json

composer.lock

vendor/

// everything else...

Secure Project Structure

For security purposes, keep all composer related files and directories above the
webroot of the project. Access vendor code using the composer autoload.php.

root/

[composer.phar]

composer.json

composer.lock

vendor/

 webroot/

 // everything else...

root/

[composer.phar]
composer.json

composer.lock

vendor/

// everything else...

Install
// Installing composer

Installation on Windows

https://getcomposer.org/Composer-Setup.exe

For Windows based systems Composer provides an installation program, which will
install Composer globally on the system.

https://getcomposer.org/Composer-Setup.exe

Installation on Linux/Unix/OSX

https://getcomposer.org/download

For Linux/Unix based systems Composer provides instructions for directly
downloading, verifying and setting up composer.

https://getcomposer.org/download

Global vs. Per-Project

● Only have to install composer
once on your system.

● Can add to PATH to allow
using simple command:
`composer`

● Every team member is
responsible for their own
composer install.

● Need to install composer for
every project.

● Have to run composer using
php command: `php composer`

● Every team member uses same
version of composer and is
not responsible for install.

Installing composer from command line for a local setup(within a project).
Passing --filename flag to rename file to just `composer`

// command-line install (local)

Download and verify

composer installer

Installs composer.phar

into current directory.

Flag sets filename

Removes installer

What just happened?

php -r "copy('https://getcomposer.org`,i...

php -r "if(hash_file('SHA348', 'composer...

Installer verified

php composer-setup.php --filename=compo...

Composer installed

php -r "unlink('composer-setup.php');"

Installing composer globally(outside of project), follows same steps as local
install. Except, composer file is moved to a directory in your PATH.

// command-line install (global)

Download and verify

composer installer

Installs composer.phar

into current directory.

Flag sets filename

Removes installer

What just happened?

php -r "copy('https://getcomposer.org`,i...

php -r "if(hash_file('SHA348', 'composer...

Installer verified

php composer-setup.php --filename=compo...

Composer installed

php -r "unlink('composer-setup.php');"

mv composer.phar /usr/local/bin/composer
Moves composer.phar

into a PATH accessible
directory.

root/

[composer.phar]

composer.json
composer.lock

vendor/

// everything else...

Init
% composer init

composer.json structure

Composer.json is a json schema file that defines project metadata, properties
and package dependencies.

{

 "name": "..."

 "description": "...",

 "type": "project",

 "license": "...",

 "authors": [{...}],

 "minimum-stability": "...",

 "require": {...},

 "require-dev": {...},

}

The `composer init` command executes an interactive guide for generating a
basic composer.json file. Prompting for property values and any initial

dependencies. Square brackets [] contain default values.

Prompts for project
metadata.

Prompts for interactive
search for project
dependencies.

Confirm and generate
composer.json file.

What just happened?

Package name (<vendor>/<name>)[user/dir]:

Description []: My demo composer project

Author [<name> <email>]:

Minimum Stability []: ""

Package type (e.g, library, ...) : project

License[]:

... define Dependencies [yes]?

... define dev-dependencies [yes]?

Confirm generation [yes]?

% composer init

After completing the interactive 'composer init' command the following
composer.json file is created. It contains basic project metadata.

{

 "name": "mike.miles/c101d",

 "description": "My demo composer project",

 "type": "project",

 "authors": [

 {

 "name": "Mike Miles",

 "email": "MMiles@wearegenuine.com"

 }

],

 "require": {}

}

Repositories
// package repositories

root/

[composer.phar]

composer.json
composer.lock

vendor/

// everything else...

Packagist

By default composer will look for packages on packagist.org.

Adding repositories (composer)

Additional composer package repositories can be added to the composer.json file
as an object in the 'repositories' array, with type and url attributes specified.

{

 ...

 "repositories":[

 {

 "type": "composer",

 "url": "https://packages.drupal.org/8"

 },

],

 "require": {...},

 ...

}

Adding repositories (vcs)

Github or other version control repositories can also be added to the
'repositories' array, using type of 'vcs' and providing the url.

{

 ...

 "repositories":[

 {

 "type": "vcs",

 "url": "https://github.com/name/project"

 },

],

 "require": {...},

 ...

}

root/

[composer.phar]

composer.json
composer.lock
vendor/
// everything else...

require
% composer require

Composer require variations

The 'require' command has optional values for defining a specific package and
version constraints. Without any options, it launches an interactive search.

% composer require

% composer require <vendor>/<package>

% composer require <vendor>/<package> <version>

The composer 'require'* command when used without parameters, prompts an
interactive search for packages that match a provided term. Displaying a list

of matching packages from all known repositories.
*The --no-suggest flag was passed for clean demo output.

Searches known
repositories and returns
list of matching packages.

Prompt for package

search keyword.

Prompt to select package
and optionally version.

% composer requireWhat just happened?

Downloads package and
dependencies into vendor
and update composer.lock

Adds package and version
to composer.json

Search for package: log

Found 15 packages matching log:

 [0] monolog/monolog

 [1] psr/log

 ...

Enter package # to add... : 0

Enter package version constraint... :

Using version ̂ 1.23 for monolog/monolog

./composer.json has been updated

 - Installing psr/log(1.0.2)

 - Installing monolog/monolog(1.23.0)

Writing lock file

composer.lock

Composer.lock is a generated JSON schema file that contains a "packages" array
with data about all installed project dependencies. Including the exact version

installed, repository location and any child dependencies.

{

 "packages": [

 {

 "name": "monolog/monolog",

 "version": "1.23.0",

 "source": { ... },

 "require": {

 "php": ">=5.3.0",

 "psr/log": "~1.0"

 },

 ...

DO NOT EDIT THE LOCK FILE

The composer.lock files is generated and maintained by Composer and should
never be directly edited.

/vendor

The vendor directory holds the files for all installed 3rd party packages. The
directory is organized into vendor directories and then package directories. A

vendor can contain many package directories.

root/

 ...

vendor/

composer/

 monolog/

 monolog/

 psr/

 log/

DO NOT COMMIT VENDOR

When using composer it is best not to add the vendor directory to your project
version control repository, so that you do not have to maintain 3rd party code.

The composer 'require' command when passed a vendor/package value will search
for the package across the known repositories. If found it will get the latest
package version and install it along with any child dependencies. Updating the

composer.json and composer.lock files.

Adds latest version of
package to composer.json

Provides suggestions of
additional packages to
install.

% composer require <package>What just happened?

Downloads package and all
dependencies into the
vendor/ directory.

Adds package and
dependency information

to composer.lock

 Using version 5.7 of phpunit/phpunit

./composer.json has been updated

Writing lock file

 - Installing symfony/yml(v3.4.6)

 - Installing sebastian/version(2.0.1)

 ...

 - Installing phpunit/phpunit(5.7.27)

symfony/yaml suggests installing...

phpunit/phpunit suggests installing...

Package version constraints

Composer uses constraint strings to figure out which version of a package to add
to a project. It supports a range of ways to define package constraints.

{

 ...

 "require": {

 "vendor/package": "1.0.1",

 }

 ...

}

"vendor/package": ">=1.0 <2.0",

"vendor/package": "1.0.*",

"vendor/package": "~1.2",

"vendor/package": "2.0@dev"

*The --no-suggest flag was passed for clean demo output.

The composer 'require' command when passed package and version constraint
parameters will find the latest version of a package that meets the constraint

criteria. It will then install the package and any child dependencies.

Adds specified version of
package to composer.json

% composer require <package> <version>What just happened?

Downloads package and all
dependencies into the
vendor/ directory.

Adds package and
dependency information

to composer.lock

./composer.json has been updated

Writing lock file

 - Installing symfony/polyfill-mbstring...

 - Installing symfony/translation(v3.4.6)

 ...

 - Installing behat/behat(3.3.1)

After adding packages using the 'composer require' command, project
dependencies are added to the composer.json 'require' array.

{

 "name": "mike.miles/c101d",

 "description": "my demo composer project",

 "type": "project",

 "authors": [...],

 "require": {

 "monolog/monolog": "^1.20.0",

 "phpunit/phpunit": "^5.7",

 "behat/behat": "3.3.*"

 }

}

root/

[composer.phar]

composer.json

composer.lock
vendor/
// everything else...

install
% composer install

No Lock vs. Lock

● Composer will read
requirements from the
composer.json file if there
is no lock file

● Composer will use version
constraints to find matching
package versions.

● Can result in different
versions per install.

● Composer will read
requirements from
composer.lock if present.

● Composer will install exact
version specified in the lock
file.

● Same version of packages will
be installed every time.

COMMIT COMPOSER.LOCK TO REPO

It is best practice to add your composer.lock file to your version control
repository. Doing so guarantees that every developer (and environment) on the

project uses the same version of 3rd party packages.

*The --no-suggest flag was passed for clean demo output.

When the composer `install` command is run, it will install all known project
dependencies. It will read dependencies from composer.lock if it exist
(installing exact versions), else it will read from composer.json.

If composer.lock exists,
then reads dependency
information from there,
else from composer.json.

% composer installWhat just happened?

Downloads all packages
and all dependencies
into the vendor
directory.

If composer.lock file is
not present then it is
created.

Loading composer repositories...

Installing dependencies from lock file

Writing lock file

 - Installing webmozart/assert(1.3.0)...

 - Installing symfony/polyfill-mbstring...

 - Installing psr/log(1.0.2)...

 ...

 - Installing monolog/monolog(1.23.0)...

 - Installing phpunit/phpunit(5.7.27)...

 - Installing behat/behat(3.3.1)...

root/

[composer.phar]

composer.json
composer.lock
vendor/
// everything else...

update
% composer update

Composer update variations

The 'update' command has optional values for defining a specific package to
update. If not specified it will update all packages in project.

% composer update

% composer update <vendor>/<package>

When the composer `update` command is passed a vendor/package name, it will
attempt to update the package to the latest version that matches the version

constraints specified in composer.json.

Retrieves information
about project and
dependencies.

% composer update <package>What just happened?

Updates package to latest
version that meets
constraints. As well as,
any dependencies.

Updates composer.lock
file is with new
package version.

Loading composer repositories...

Updating dependencies...

Writing lock file

 - Updating behat/behat(3.3.1 => 3.4.3)...

When the composer `update` command is run with no package specified, it will
attempt to update all project dependencies to the latest versions that match

the version constraints specified in composer.json.

Retrieves information
about project and
dependencies.

% composer updateWhat just happened?

Updates all packages to
latest versions that meets
constraints. As well as,
any dependencies.

Updates composer.lock
file is with new package
versions.

Loading composer repositories...

Updating dependencies...

Writing lock file

 - Updating monolog/monolog(1.20.0 =>...

root/

[composer.phar]

composer.json
composer.lock
vendor/
// everything else...

remove
% composer remove

When the composer 'remove' command is run it will delete the specified package
and any dependencies not used by other packages from the `vendor` directory.

All information for the removed packages will be removed from composer.json and
composer.lock files.

Retrieves information
about package and
dependencies.

% composer remove <package>What just happened?

Removes package and all
dependencies from
vendor directory

Loading composer repositories...

 - Removing symfony/yml(v3.4.6)

 - Removing sebastian/version(2.0.1)

 ...

 - Removing phpunit/phpunit(5.7.27)

Removes package and
dependencies from
composer.json and
composer.lock

Updating dependencies...

root/

[composer.phar]

composer.json

composer.lock

vendor/

// everything else...

Now what?

Since composer is handling all of
the 3rd party code for your PHP
project, you can now focus on

everything else.

root/

[composer.phar]

composer.json

composer.lock

vendor/

 autoload.php
// everything else...

autoload
// autoload.php

Composer autoload.php
<?php

 require __DIR__ . '../vendor/autoload.php';

 $log = new Monolog\Logger('name');

 $log->pushHandler(new Monolog\Handler\StreamHandler('app.log',
Monolog\Logger::WARNING));

 $log->addWarning('Foo');

Composer generates an autoload.php file in the `vendor/` directory. This file
can be used for PSR-4 autoloading of any installed packages. Use it in your

application code to access and use project dependencies.

Links & Resources

> bit.ly/Dcon18Composer

> getcomposer.org

> packagist.org

https://bit.ly/Dcon18Composer
https://getcomposer.org/
https://packagist.org/

Questions / Feedback?

@mikemiles86

</presentation>

