
S I T E B U I L D I N G T R A C K  
@ E M M A J A N E H W
http://drupal.org/user/1773

AVOIDING  
THE GIT OF DESPAIR

E M M A J A N E H O G B I N W E S T B Y

http://drupal.org/user/1773

Avoiding 
The Git of Despair

@emmajanehw
http://drupal.org/user/1773

www.gitforteams.com

Back end developers have it easy. Just miles and miles of text-based code. Site builders, on the other hand, have to rely on point-and-click exportables from CTools /
Features. Let's face it, there's a lot of magic going on, and it doesn't always go well. In this session we'll explore where all that stuff *goes* so that you're not constantly
tripping over yourself in Git.

More specifically:

10,000ft view of how Git works with a deployment landscape (dev/stage/prod)

5,000ft view of how branches work, and what to do in Git world before you export a Feature

on-the-ground look at the commands you'll need to run once a Feature is exported so you can share it with others

5,000ft view of why you don't want to work on the same feature as someone else if you can avoid it

on-the-ground look at Feature-related merge conflicts just in case it happens to you

By the end of this session, you should be able to:

Describe a basic Git branching strategy, and how it relates to a typical dev/stage/prod infrastructure

Recall the Git commands you need to add a new Feature to your Git repository

Describe what a Git conflict is and how to recover from it

Throughout this session we'll explore the problems you might run into when working with Drupal-generated configuration files and Git. Although we'll focus on Drupal 7
and the Features module, the high level concepts will apply equally to other modules (and versions of Drupal!)

DrupalCon Los Angeles

http://drupal.org/user/1773
http://www.gitforteams.com

Local Dev ProdStaging

With Apologies 
To Those Who’ve Not Seen  

The Princess Bride.

Hello — I’m Emma. I’ve been working with Drupal + version control for over a decade.

In this presentation I’m going to give you an overview of how to use Git to push configuration-as-code to the right environment.

I don’t want to say that this is easy stuff…because you won’t believe me.

Happening
• How Git works in a deployment landscape.

• How to use branches for different environments.

• Commands you need to run.

• Why it’s hard to collaborate on Features.

• Commands to deal with with merge conflicts

Not Happening
First-timer’s guide to:

• Drupal Module: Features

• Git (at the Command line)

But don’t run away just yet!

Drupal Module:
Features

20,000ft View

10,000ft view of how Git works with a deployment landscape (dev/stage/prod)

Features
A feature is a collection of Drupal entities which
taken together satisfy a certain use-case.

Features allow us to export point-and-clicked
configuration from one environment to another.

https://drupal.org/project/features

https://drupal.org/project/features

/* Sort criterion: Content: Post date */

$handler->display->display_options['sorts']  
 ['created']['id'] = 'created';

$handler->display->display_options['sorts']  
 ['created']['table'] = 'node';

$handler->display->display_options['sorts']  
 ['created']['field'] = 'created';

$handler->display->display_options['sorts']  
 ['created']['order'] = 'DESC';

Sharing Features

- Project hosting system, e.g. Bitbucket or GitHub or something else.

- Developers

- (who might also be) Reviewers

Sharing Features

1. Start working on a feature.

2. Upload new feature.

3. Start peer review process.

4. Accept / reject the changes.

Deploying Code  
with Git

10,000ft View

10,000ft view of how Git works with a deployment landscape (dev/stage/prod)

Deploying Code

And I definitely don’t want to tell you that Git is easy to learn, because that would make me a liar.

(Actually) 

Deploying Code

When you deploy code, you don’t really move it through a series of machines.

• You push your code to the central code hosting repository

• Move to the next machine

• Pull the updated code into the new environment.

This cycle is repeated for each of the different environments that you work in (development; qa/staging; production).

Branches allow you to
store separate instances

of ongoing work.

Remember This

5,000ft view of how branches work, and what to do in Git world before you export a Feature

OUTCOME: Describe a basic Git branching strategy, and how it relates to a typical dev/stage/prod infrastructure

Git branching strategies are
conventions we use based on
common deployment setups.

Remember This

Per-Environment Branches

Per-Environment Branches

Sharing Features with Git
5,000ft View

10,000ft view of how Git works with a deployment landscape (dev/stage/prod)

Sharing Features with Git

- Project hosting system, e.g. Bitbucket or GitHub or something else.

- Developers

- (who might also be) Reviewers

Features (and its related export functions) 

is not always perfect but it is
always better than using nothing.

Remember This

Improving Consistency
with Drush

5,000ft View

The ideal world isn’t quite how Features works because the underlying modules’ export tools can sometimes be inconsistent.

For example, any ctools-based module is using ctools Export function. So if there is actually a problem with the export, it's usually the fault of the specific module. I've
seen modules that inconsistently deal with their data types (0 vs '0'), or depend upon the exact order items are added to their arrays (Panelizer). But these days this is
still pretty uncommon.

Other common problems are multiple developers exporting Features with slightly different content config on their site, or after installing different modules to test
something that leave stuff behind in the database. I always tell developers after doing a features-update (export) to do a git-diff to see exactly what they have really
changed to make sure they don't commit/push bad code. But it still happens all the time. It's not Features or Git, it's just developers not paying attention to details in
many cases.

The command line can
provide a faster route to a

more consistent experience.

Remember This

Drush
• Drush is a command-line shell and scripting

interface for Drupal.

• Execute cron, run update.php, work with
Features, clear cache, and more.

• https://github.com/drush-ops/drush

https://github.com/drush-ops/drush

Features focuses on code where
Drupal would have normally
focused on the database.

Remember This

Features Revert --> use the version of the Feature which is stored in code

Features Update --> export the version of the Feature which is currently in the database to code (“update” the code version)

https://www.drupal.org/node/582680

Features + Drush 
Command Line Survival Guide

export a feature drush fu

revert a feature drush fr

really revert your
features

drush fra --force --yes

clear all caches drush cc all

https://www.drupal.org/node/582680

Avoiding Conflict
5,000ft View

Be Unique; 
Avoid Overlap

Remember This

Branch Reminder

Sorry for the mixed metaphors.

Getting Ready (in Git)
• Start in the right "environment" 

$ git checkout [dev]

• Create a new feature branch  
$ git checkout -b [1234-new_feature]

Creating a Feature  
(Site Builder-friendly)

• Set all Features back to their factory defaults. 
$ drush fra --force --yes

• Build your new feature with the pointy-clicky.

• Export your feature’s settings with the pointy-clicky.

• Put the downloaded file into: 
/sites/all/modules/features

• Unpack your new feature 
$ tar xvf feature_name.tar.gz

Updating a Feature 
(Site Builder-friendly)

• Set all Features back to their factory defaults. 
$ drush fra --force --yes

• Build your new feature with the pointy-clicky.

• Update all features to use settings from the
database 
$ drush features-update-all 
or 
$ drush fu-all

Verify Your Feature is Right
• Your code is now changed to match the database. 

Using Git, see what’s changed.  
$ git diff

• Checklist:

• Within an array, are the values in the same order?

• Are strings (not) quoted?

• Are there extra pieces?

• Are there missing pieces?

Other common problems are multiple developers exporting Features with slightly different content config on their site, or after installing different modules to test
something that leave stuff behind in the database. I always tell developers after doing a features-update (export) to do a git-diff to see exactly what they have really
changed to make sure they don't commit/push bad code. But it still happens all the time. It's not Features or Git, it's just developers not paying attention to details in
many cases.

Git It Up
• Check what is currently not in your repository 

$ git status

• Add the new Feature to Git 
$ git add [feature_directory]

• Save the new Feature to your repository 
$ git commit

• Add a really good commit message which describes
what your Feature is, and all of its compoents.

Share Your Feature
• Upload the Feature to your shared code hosting

repository 
$ git push origin [1234-new-feature]

Testing Someone Else’s Feature
• Update your local list of branches 

$ git fetch

• Clean up your database by reverting all Features  
$ drush fra --force --yes

• Switch to the branch where the new Feature is  
$ git checkout --track origin/[1235-new-feature]

• Import the new Feature 
$ drush fr

Adding a Feature to a
Shared Branch

• Checkout the branch you want to add the new
Feature to. 
$ git checkout [dev]

• Ensure your copy of the branch is up-to-date. 
$ git pull --rebase=preserve

• Include the new Feature into the current branch 
$ git merge --no-ff [1234-new-feature]

Dealing with Conflicts
10,000ft View

Conflict is when there is
overlap at the same line.

ours theirs

Investigating Conflict
• Determine the point of conflict:  

$ git mergetool

• Want to undo that merge? Back the truck up. 
$ git reset --merge ORIG_HEAD

• Take another look at the differences 
$ git diff [1234-new-feature]...[master]

Choose “ours”

ours theirs

$ git merge -s ours [branch]

Resources
• Building a Drupal site with Git  

https://www.drupal.org/node/803746

• Git for Teams 
http://gitforteams.com

https://www.drupal.org/node/803746
http://gitforteams.com

More Resources
• Features - https://drupal.org/node/580026

• Drush - http://drush.ws/

• Introduction to Drush Series 
http://drupalize.me/series/introduction-drush-
series

• Features & Drush Series 
http://drupalize.me/series/drupal-deployment-
features-drush-series

https://drupal.org/node/580026
http://drush.ws/
http://drupalize.me/series/introduction-drush-series
http://drupalize.me/series/drupal-deployment-features-drush-series

WHAT DID YOU THINK?
EVAULATE THIS SESSION - LOSANGELES2015.DRUPAL.ORG/SCHEDULE

WWW.GITFORTEAMS.COM

http://losangeles2015.DRUPAL.ORG/schedule
http://www.gitforteams.com

