
1

Refactoring Legacy Code

By:

Adam Culp
Twitter: @adamculp

https://joind.in/11658

2

Refactoring Legacy Code

● About me

– PHP 5.3 Certified

– Consultant at Zend Technologies

– Zend Certification Advisory Board

– Organizer SoFloPHP (South Florida)

– Organized SunshinePHP (Miami)

– Long distance (ultra) runner

– Judo Black Belt Instructor

3

Refactoring Legacy Code

● Fan of iteration

– Pretty much everything requires iteration to do well:

● Long distance running
● Judo
● Development
● Evading project managers
● Refactoring!

4

Refactoring Legacy Code

● Refactoring

– “Refactoring; Improving The Design of Existing Code” book, by Martin
Fowler.

– https://github.com/adamculp/refactoring101 – for PHP code samples

5

Refactoring Legacy Code

● My book

– “Refactoring 101” on LeanPub.

– http://refactoring101.com

6

Refactoring Legacy Code

● Modernizing

– “Modernizing Legacy Applications in PHP” on LeanPub – by Paul M. Jones

– http://mlaphp.com

7

Refactoring Legacy Code

● What is “refactoring”?

– “...process of changing a computer program's source code without
modifying its external functional behavior...” en.wikipedia.org/wiki/Refactoring

– No functionality added

– Code quality

8

Refactoring Legacy Code

● Two hats

– Adding Functionality Hat

– Refactoring Hat

– We add functionality, then refactor, then add more functionality ...

9

Refactoring Legacy Code

● Then optimize

– Do not optimize while refactoring.

– Separate step.

– Refactoring is NOT optimizing.

10

Refactoring Legacy Code

● Source Control

– Refactor in branch

– Allows rollback

11

Refactoring Legacy Code

● Editor/IDE

– Files by project

– Search within project

12

Refactoring Legacy Code

● Style Guide

– Framework Interop Group

● http://php-fig.org
● PSR

– Faster reading

– United team

13

Refactoring Legacy Code

● Testing

– Consistent results

– Prevents breaks

14

Refactoring Legacy Code

● Autoloading

– Namespaces

– PSR-0

● Because legacy code typically used long class names rather than
namespace separators.

– Methods

● Global function
● Closure
● Static or Instance Method (preferred, if possible)
● __autoload() - PHP v 5.0

– Need a central place for classes

15

Refactoring Legacy Code

● Consolidate Classes

– Move to one location

● Could be named “includes”, “classes”, “src”, “lib”, etc.

– Search for include statements (include, include_once, require, require_once)

16

Refactoring Legacy Code

● Consolidate Classes Step 1

– Search for include statements (include, include_once, require,
require_once)

17

Refactoring Legacy Code

● Consolidate Classes Step 2

18

Refactoring Legacy Code

● Consolidate Classes Step 3

– User class is now autoloaded, no more require_once.

19

Refactoring Legacy Code

● Global Dependencies

1 Search for global reference

2 Move global calls to constructor

3 Convert call to a constructor parameter

4 Update call to class to pass parameter (DI)

5 Repeat

20

Refactoring Legacy Code

● Global Use Example

21

Refactoring Legacy Code

● Global Cleanup Step 1

– Move global call to constructor

22

Refactoring Legacy Code

● Global Cleanup Step 2

– Convert call to a constructor parameter

23

Refactoring Legacy Code

● Global Cleanup Step 3

– Update call to class to pass parameter (DI)

24

Refactoring Legacy Code

● Global Cleanup Repeat

– Look for more instances to clean up

25

Refactoring Legacy Code

● Replacing “new”

1 Extract instantiation to constructor parameter. (one time)

2 Extract block of creation code to new Factory class. (repeated)

3 Update instantiation calls

4 Repeat

26

Refactoring Legacy Code

● Replacing “new” Step 1 (Single)

27

Refactoring Legacy Code

● Replacing “new” Step 2 (Single)

– Pass Db object into class constructor. (DI)

28

Refactoring Legacy Code

● Replacing “new” Step 3 (Multiple)

29

Refactoring Legacy Code

● Replacing “new” Step 4 (Multiple)

– Create factory

30

Refactoring Legacy Code

● Replacing “new” Step 5 (Multiple)

31

Refactoring Legacy Code

● Replacing “new” Step 6 (Multiple)

32

Refactoring Legacy Code

● Write Tests

– Code is fairly clean

– Write tests for entire application

– If not testable, refactor

● Extract method
● Replace temp with query
● Etc.

33

Refactoring Legacy Code

● Extract SQL

1 Search for SQL

2 Move statement and relevent logic to Gateway class

3 Create test for new class

4 Alter code to use new method

5 Repeat

34

Refactoring Legacy Code

● Extract Logic

1 Search for uses of Gateway class outside of Transaction classes

2 Extract logic to Transaction classes

3 Test

4 Write new tests where needed

5 Repeat

35

Refactoring Legacy Code

● Replace “includes”

– Search for left over includes

– If in current class

1 Copy contents into file directly

2 Refactor for: no globals, no 'new', DI, return instead of output, no includes

– More often

1 Copy contents of include as-is to new class method

2 Replace with in-line instantiation

3 Search for other uses of same, and update them as well

4 Delete original include file, regression test

– Test, create new tests if needed

– Repeat

36

Refactoring Legacy Code

● Framework

– Code is able to be upgraded to framework

– Create models

– Create factories

– Create modules

– Move models & factories

– Create/Update tests

– Create controllers and views

– Add service

– Use events

– Use 3rd party (vendor) libraries

37

Refactoring Legacy Code

● Conclusion

– Do not refactor a broken application

– Always have tests in place prior to refactor

● Unit tests or
● Functional tests or
● Manual tests

– Do things in small steps

– Love iteration!

● Thank you!

– Please rate at: https://joind.in/11658

Adam Culp

http://www.geekyboy.com

Twitter @adamculp

Questions?

http://www.geekyboy.com/

	Intro
	About me
	Iteration
	Refactoring Book
	Refactoring 101 Book
	Modernizing Legacy Applications Book
	Refactoring hat
	Two hats
	Optimization Step
	Source Control
	Editor/IDE
	Coding Style
	Testing
	Autoloading
	Consolidate Classes
	Consolidate Classes Step 1
	Consolidate Classes Step 2
	Consolidate Classes Step 3
	Global Dependencies
	Global Use Example
	Global Cleanup Step 1
	Global Cleanup Step 2
	Global Cleanup Step 3
	Global Cleanup Repeat
	Replace "new"
	Replace "new" Step 1 (single)
	Replace "new" Step 2 (single)
	Replace "new" Step 3 (multi)
	Replace "new" Step 4 (multi)
	Replace "new" Step 5 (multi)
	Replace "new" Step 6 (multi)
	Write Tests
	Extract SQL
	Extract Logic
	Replace "includes"
	Framework
	Conclusion
	Thank you

