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Refactoring Legacy Code

● About me

– PHP 5.3 Certified

– Consultant at Zend Technologies

– Zend Certification Advisory Board

– Organizer SoFloPHP (South Florida)

– Organized SunshinePHP (Miami)

– Long distance (ultra) runner

– Judo Black Belt Instructor
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● Fan of iteration

– Pretty much everything requires iteration to do well:

● Long distance running
● Judo
● Development
● Evading project managers
● Refactoring!
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● Refactoring

– “Refactoring; Improving The Design of Existing Code” book, by Martin 
Fowler.

– https://github.com/adamculp/refactoring101 – for PHP code samples
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● My book

– “Refactoring 101” on LeanPub.

– http://refactoring101.com
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● Modernizing

– “Modernizing Legacy Applications in PHP” on LeanPub – by Paul M. Jones

– http://mlaphp.com
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● What is “refactoring”?

– “...process of changing a computer program's source code without 
modifying its external functional behavior...” en.wikipedia.org/wiki/Refactoring

– No functionality added

– Code quality
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● Two hats

– Adding Functionality Hat

– Refactoring Hat

– We add functionality, then refactor, then add more functionality ...
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● Then optimize

– Do not optimize while refactoring.

– Separate step.

– Refactoring is NOT optimizing.
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● Source Control

– Refactor in branch

– Allows rollback
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● Editor/IDE

– Files by project

– Search within project
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● Style Guide

– Framework Interop Group

● http://php-fig.org
● PSR

– Faster reading

– United team
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● Testing

– Consistent results

– Prevents breaks
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● Autoloading

– Namespaces

– PSR-0

● Because legacy code typically used long class names rather than 
namespace separators.

– Methods

● Global function
● Closure
● Static or Instance Method (preferred, if possible)
● __autoload() - PHP v 5.0

– Need a central place for classes
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● Consolidate Classes

– Move to one location

● Could be named “includes”, “classes”, “src”, “lib”, etc.

– Search for include statements (include, include_once, require, require_once)



16

Refactoring Legacy Code

● Consolidate Classes Step 1

– Search for include statements (include, include_once, require, 
require_once)
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● Consolidate Classes Step 2
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● Consolidate Classes Step 3

– User class is now autoloaded, no more require_once.
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● Global Dependencies

1 Search for global reference

2 Move global calls to constructor

3 Convert call to a constructor parameter

4 Update call to class to pass parameter (DI)

5 Repeat
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● Global Use Example
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● Global Cleanup Step 1

– Move global call to constructor
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● Global Cleanup Step 2

– Convert call to a constructor parameter
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● Global Cleanup Step 3

– Update call to class to pass parameter (DI)
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● Global Cleanup Repeat

– Look for more instances to clean up
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● Replacing “new”

1 Extract instantiation to constructor parameter. (one time)

2 Extract block of creation code to new Factory class. (repeated)

3 Update instantiation calls

4 Repeat
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● Replacing “new” Step 1 (Single)
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● Replacing “new” Step 2 (Single)

– Pass Db object into class constructor.  (DI)
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● Replacing “new” Step 3 (Multiple)
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● Replacing “new” Step 4 (Multiple)

– Create factory
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● Replacing “new” Step 5 (Multiple)
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● Replacing “new” Step 6 (Multiple)
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● Write Tests

– Code is fairly clean

– Write tests for entire application

– If not testable, refactor

● Extract method
● Replace temp with query
● Etc.
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● Extract SQL

1 Search for SQL

2 Move statement and relevent logic to Gateway class

3 Create test for new class

4 Alter code to use new method

5 Repeat
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● Extract Logic

1 Search for uses of Gateway class outside of Transaction classes

2 Extract logic to Transaction classes

3 Test

4 Write new tests where needed

5 Repeat
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● Replace “includes”

– Search for left over includes

– If in current class

1 Copy contents into file directly

2 Refactor for: no globals, no 'new', DI, return instead of output, no includes

– More often

1 Copy contents of include as-is to new class method

2 Replace with in-line instantiation

3 Search for other uses of same, and update them as well

4 Delete original include file, regression test

– Test, create new tests if needed

– Repeat
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● Framework

– Code is able to be upgraded to framework

– Create models

– Create factories

– Create modules

– Move models & factories

– Create/Update tests

– Create controllers and views

– Add service

– Use events

– Use 3rd party (vendor) libraries
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● Conclusion

– Do not refactor a broken application

– Always have tests in place prior to refactor

● Unit tests or
● Functional tests or
● Manual tests

– Do things in small steps

– Love iteration!



 

● Thank you!

– Please rate at: https://joind.in/11658

Adam Culp

http://www.geekyboy.com

Twitter @adamculp

Questions?

http://www.geekyboy.com/
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