

Stream Your Way to Success!
Big Pipe, Refreshless, ESI, AJAX and more!

Fabian Franz (Fabianx) - @fabianfranz

Performance Track

Stream your way to
success!

Big Pipe, Refreshless, ESI, AJAX and
more!

Welcome!

This is a beginner
session!

So if you are not a
beginner …

… you need to
leave!

Immediately!

Unless you are here
for the demos.

Or want to know
what crazy things …

… I have been
working on now.

Then you can
stay! :-)

 
or for any other reason ;)

So who am I?

I am Fabian Franz

aka Fabianx
 

Btw. if you wondered: That originally
did stand for Fabian + Linu-x  

I also wanted an -x extension :D

@fabianfranz on
Twitter

I work for Tag 1
Consulting

as a 
Senior Performance

Engineer / Technical Lead

And I recently got
appointed to be a

Drupal 7 core
maintainer

(a framework manager to be precise)

I was born at the
same day as GNU

(so I am living OSS
history)

which was founded
on September 27, 1983

OMG

That day is today!

I wanted to bring a
cake …

but that auditorium was
a little too large for it …

But I’ll have some
demos for you later

Just no cake!

But enough about
me

Who are you?

Let me get to know
you

Ah, I know

You all are Pirates!

Eager to conquer the
seas of Performance!

So

Who of you want a
faster site?

Who of you don’t?

Ah, nevermind :).

100% of you want a
faster site! - Nice!

But

How do you get
one?

The answer is:

42!

Ah, no wrong track.

No, the answer is:

ACD
(not to be mixed up with ACDC)

So anyone remembers
what that stands for?

No?

Ah, maybe there that
person in the background.

I’ll tell you!

Avoid 
 

Cache 
 

Defer

Avoid 
 

Cache 
 

Defer

You are here!

But why defer?

You might know
the problem.

You have build this
huge social network.

Doesn’t matter
whats it called.

And you have all this
very complex content

tailored perfectly
to your users needs.

And it all works
really great.

There is just this
one little problem.

Very little problem.

Really not a big
deal

Your site takes 3.5
seconds to load.

 
That are:  

 
3500 ms (!!!)

Well maybe that is
a big deal

Maybe that even is
a deal breaker

Maybe users are even
leaving your site for it.

So what do you do?

You need a
wonder!

A fast wonder!

So you transform
yourself into Gandalf!

 
(Other magicians had not been available at
the time of the making of this presentation)

and smoke a Pipe!
 

(Smoking is not endorsed in anyway; it is purely used for comical purposes)

A BIG PIPE!
 

(Smoking is not endorsed in anyway; it is purely used for comical purposes)

And you think:

What if I cheat?

What if I give the
user the impression

that the site is
really loading fast.

even though in
reality its not.

And that is:

Perceived
Performance!

And exactly what
Facebook does since ages

And that is what

Drupal 8 out of the
box

can now do, too!

In 8.1.0 big_pipe entered
core as an experimental

module.

And in 8.2.0 it will be:  
 

Beta Stability!

So I’ll now

get myself some
coffee while you

all are probably busy to
try big_pipe out right now.

No?

You want your
money back?

Thats not enough?

Okay, lets continue
:)

What is streaming?

What is streaming?

Available since HTTP/1.1 (!) was
released in June 1999

Content-Encoding: chunked

Transfer-Coding: chunked

What is streaming?

<?php	
!

echo 'Hello';	
flush(); 	
 	
sleep(10);	
 	
echo 'World';

What is streaming?

Previous PHP script: Easiest way to
check

Infrastructure Stack needs to be
ready

Ready for streaming!
Previous PHP script: Easiest way to check
Infrastructure Stack needs to be ready

This needs to be fast!

Not ready!
Previous PHP script: Easiest way to check
Infrastructure Stack needs to be ready

This needs to be fast!

What is streaming?
<?php	
!

header('Surrogate-Control: no-store, content=“BigPipe/1.0"');	
header('X-Accel-Buffering: no');	
!

echo 'Hello';	
flush();	
!

sleep(10);	
!

echo 'World';	

The server needs to
know it uses streaming!

More configuration
is needed.

Server requirements

Server requirements
for Streaming

LAMP: out of the box

NGINX: out of the box

Varnish: 3 loc - needed

Fastly: Out of the box

Now our server is
ready!

Let’s get our code
ready, too!

Streaming in Drupal
7 + 8

use Symfony\Component\HttpFoundation
\StreamedResponse; 
 
return new StreamedResponse(function() { 
 echo ‘Hello’; 
 
 flush();  
 sleep(10); 
 
 echo ‘World';  
});

Streaming in Drupal 8

Streaming in Drupal 7
hook_menu:  
 
delivery callback => ‘my_callback’

menu callback:  
 
return function({…});

my_callback($result):  
 
$result();

If that is so easy …

Why has no one
used that before?

Because it is not
practical.

Because you usually
don’t want to …

… just send some
“Hello World”.

Because you have
the very practical …

… business need that the
site looks the same …

… and for the user
nothing changes.

Except that its
faster!

Of course!

What to stream?

What to stream?

Nothing?  
 

=> Default

What to stream?

Everything?  
 

=> Very jumpy

What to stream?

What about every block?  
 

=> Could work, but very
empty page at start.

What to stream?

What about specially
configured blocks?  

 
=> That works, but what

if its not a block?

What to stream?

What about specially
configured blocks?  

 
=> That works, but what

if its not a block?

The solution is:

What to stream?

Dynamic Parts of
the Page!

What to stream?

Dynamic Parts of
the Page! 

=> Uncacheable parts of the
page! (or too granular)

But how do you identify
the dynamic parts?

Find the dynamic
parts!

Placeholder it!

Idea: Placeholder everything that is
too dynamic.  
 
Allow that the code can specify that
this can be independently rendered.

How does it work?

{user.permissions} and {url}
cached

Shopping Cart 
{user} cached

Normal Block
{user.permissions}

cached

How does it work?

{user.permissions} and {url}
cached

Placeholder

Normal Block
{user.permissions}

cached

Placeholder it!

Put it in [‘#attached’]
[‘placeholders’] in a render array.

Placeholder it!

D8 makes this very easy.

Cache-Tags, Cache-Contexts and
Max-Age

Placeholder it!

So Drupal 8 for everything on the
page knows: 
 
- how to invalidate it  
- what to vary it on 
- how long to cache it

Placeholder it!

Things that are uncacheable: 
 
max-age = 0

Things that are too granular 
 
cache-contexts = [user]

And now we can …

… automatically
placeholder it!

Placeholder it!

We can do that:  
 
- Bottom-Up approach (D8)  
 
instead of:  
 
- Top-Down approach (D7)

Lazy Builders

Lazy Builders

Independently renderable 
 
=> No outside dependencies!

Lazy Builders (I)
Autoplaceholder dynamic content:  
 
!

!

$build = [
 '#lazy_builder' => ['MyClass::lazyBuild', 'node', 1],	
 '#cache' => [
 'max-age' => 0,	
],	
];	

Lazy Builders (II)

Force a placeholder (except for POSTs): 
 
!

$build = [
 '#lazy_builder' => ['MyClass::lazyBuild', 'node', 1],	
 '#create_placeholder' => TRUE,	
];	
!

Lazy Builders (III)
Force a placeholder always: 
 
!

$lb = [
 '#lazy_builder' => ['MyClass::lazyBuild', 'node', 1],	
];	
!

$build['#attached']['placeholders']['{my_unique_placeholder}'] = $lb;	
$build['#markup'] = '<div>{my_unique_placeholder}</div>';  
 
 

Lazy Builder with
Dependencies (III)

!
$node = \Drupal::routeMatch->getParameter('node');	
!

$build =	
 '#cache' => [
 'contexts' => 'route',	
],	
];	
!

// This is a child item!	
$build['lb'] = [
 '#lazy_builder' => ['MyClass::lazyBuild', 'node', $node->id()],	
];

But we have all of
that!

And its still not
fast !!!

Now we split our
3.5 seconds up

2 seconds for the
content

and 1.5 seconds for the
streamed placeholders

So the UX is now
down to 2 s - at least

But why?

Remainder is
perfectly cacheable

Because there are no
dynamic parts anymore.

In Drupal 8 there is
Dynamic Page Cache

enabled out-of-
the-box.

So we enable it and
…

like magic!

Down to 35 ms!
and 1.5 seconds of streaming.

Let’s take a look at a 
Big Pipe Demo!

Demo

Demo 2 (if time)

!

So if you want a (perceived)
fast site in Drupal 8

!

you just enable the big_pipe
experimental module and you are

done.

!

Maybe you need to declare
your custom dynamic parts.

!

But that’s it.

!

There was once upon a
time,

!

a Site that had performance
problems …

!

… they enabled BigPipe and
the problems have gone away.

!

So it works.

Ways of Streaming

Idea of placeholders
is not new.

Idea of auto-
placeholdering is.

Another way is: ESI

<!— esi:include ‘/current-time.php’ —>

But ESI is easy now,
too!

Thanks to Lazy Builders
+ Placeholders!

Just define a new
ESIPlaceholder Strategy.

Hash the placeholders
in the database.

Define a route: /
esi-fragment/[hash]

And you are done!

Or for AJAX:

Put the placeholders
in drupalSettings

And use JS to replace
the placeholders.

Difference of AJAX/
ESI + BIG PIPE

ESI/AJAX:  
 
- n requests 
- n full bootstraps 
 
11 requests every page load => can
kill your site performance

Difference of AJAX/
ESI + BIG PIPE

BigPipe:  
 
- 1 request 
- Several inlined responses  
 
=> way better for cold cache
performance  

Be creative and
combine!

Future: ESI BigPipe  

Response from the edge / CDN

Stream the rest later  
 
- Support in Fastly: “Soon”  
- Varnish: “Patch for v3 available”

What about Drupal 7?

Just prototype implementations

But there is major work on core
itself!

What about Drupal 7?

Want you to all open up:  
 

https://www.drupal.org/
node/2754245

https://www.drupal.org/node/2754245

Review my patch
right now!

Because with reviews,
we can get that in!

Attachments Collectors
solve the “drupal_add_js”

problem.

Needs to be fixed
in Core.

Important base
work

I need your help!

“Together we can bring
back the important parts
of the D8 caching system
to Drupal 7 - including
BigPipe.”

How can you help?

Contact me

Send your developers

Sponsor work (as a grant)

Sprint on Friday

Round of Applause
for: 

 
- Wim Leers  
- Acquia 

(sponsored BigPipe
work)

Refreshless (if time) 

Questions ???

Thank you!
@fabianfranz

Fabianx

fabian@tag1consulting.com

Please vote for my session!

Come to the sprints 

on Friday!

Foll
ow me 

on T
witter

!

mailto:fabian@tag1consulting.com

JOIN US FOR!
CONTRIBUTION SPRINTS

First Time Sprinter Workshop - 9:00-12:00 - Room Wicklow2A!
Mentored Core Sprint - 9:00-18:00 - Wicklow Hall 2B!
General Sprints - 9:00 - 18:00 - Wicklow Hall 2A!

!

Evaluate This Session

THANK YOU!

events.drupal.org/dublin2016/schedule

WHAT DID YOU THINK?

