
Mike Herchel
Senior Front-end Dev at Lullabot // @mikeherchel

Frontend Web Performance

WHAT TO EXPECT
‣Why make webpages fast?

‣What is fast?

‣Quick rundown on how browsers work

‣How to measure performance

‣Tips and tricks to optimize each browser
rendering stage.

Mike Herchel

Millie Herchel

Dexter
Herchel

http://tiny.cc/dcon-perf

http://tiny.cc/dcon-perf

https://www.stevesouders.com/blog/2012/02/10/the-performance-golden-rule/

80-90% of the end-user
response time is spent on
the frontend. Start there.

— Steve Souders

– https://www.doubleclickbygoogle.com/articles/mobile-speed-matters/

53% of mobile site visits are
abandoned if pages take
longer than 3 seconds to
load.

– https://www.doubleclickbygoogle.com/articles/mobile-speed-matters/

Mobile sites load in 5
seconds earn up to 2x
more mobile ad revenue.

WHAT IS FAST?

FRONTEND
PERFORMANCE
METRICS
‣Time to First Byte

‣Time to First Meaningful Paint

‣Time to First Interactive

‣Speed Index

TIME TO FIRST BYTE
‣Time from when you begin navigation until the first byte of the
html file hits your browser.

‣Delays here can indicate backend performance issues.

‣Effective caching really helps with this (Drupal FTW)

‣CDNs can dramatically help. They position content closer to the
user.

TIME TO FIRST BYTE

TIME TO FIRST
MEANINGFUL PAINT
‣Primary content is visible.

‣Marks the paint event that follows the most significant change to
layout.

‣Can be ambiguous.

TIME TO FIRST
MEANINGFUL PAINT

TIME TO
INTERACTIVE
‣Load is finished, and main thread work is done

‣Consistently interactive

TIME TO INTERACTIVE

SPEED INDEX
‣Calculated value

‣Average time at which visible parts of the page are displayed

‣How quickly does the page approach visually complete?

‣Essentially the time it takes for average pixel to paint (milliseconds)

https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index

SPEED INDEX

https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index

SPEED INDEX

HOW BROWSERS WORK:
NETWORK DOWNLOAD
1. Download index file

2. Parse index file as it is downloading

3. Prioritize critical content

HOW BROWSERS WORK:
PRIORITIZING CONTENT

1. Highest
‣ Initial document

‣ CSS

2. High
‣Webfonts

‣ Script tags in the <head>

‣ XHR

3. Medium
‣ Script tags outside of the <head>

4. Low

HOW BROWSERS WORK:
PARSE / EXECUTE CSS & JS

1. Browser parses and executes JS

2. Will completely parse and execute JS in the head that is not
async’d or deferred before rendering layout.

3. Will execute synchronously or afterwards if JS is in the footer
(or async’d or deferred).

https://developers.google.com/web/fundamentals/performance/critical-rendering-path/constructing-the-object-model

HOW BROWSERS WORK:
CREATING THE CSSOM

https://developers.google.com/web/fundamentals/performance/critical-rendering-path/constructing-the-object-model

HOW BROWSERS WORK:
CREATING THE DOM

https://developers.google.com/web/fundamentals/performance/critical-rendering-path/render-tree-construction

HOW BROWSERS WORK:
CREATING THE RENDER
TREE

LAYOUT
(AKA REFLOW)
‣Browser calculates how much space it takes to put elements on
screen.

‣Calculates where to place the elements on the screen in relation to
other elements and the viewport.

‣Expensive.

PAINT
‣The process of filling in pixels.

‣Text, colors, images, borders, etc

‣Expensive.

COMPOSITING
‣Multiple layers within browser get placed on the screen.

‣Think of these as Photoshop layers - they can easily be moved
around

‣Cheap!

MEASURING
PERFORMANCE

MEASURING PERF:
DEVTOOLS AUDITS
TAB
1. Demo

OPTIMIZATIONS

OPTIMIZATIONS:
NETWORK
DOWNLOAD
‣Use less bandwidth

‣Limit the use of large images

‣Use responsive images

‣Limit network requests

‣ Especially if you’re not using HTTP/2 (aka h2)

PRPL PATTERN
‣Push critical resources for the initial URL route.

‣Render initial route.

‣Pre-cache remaining routes.

‣Lazy-load and create remaining routes on demand.

https://developers.google.com/web/fundamentals/performance/prpl-pattern/

OPTIMIZATIONS:
NETWORK
DOWNLOAD
‣Use less bandwidth

‣Limit the use of large images

‣Use responsive images

‣Limit network requests

‣ Especially if you’re not using HTTP/2 (aka h2)

RESOURCE HINTS
‣Link tags inserted in <HEAD> that tell the browser to reach out and
download or connect to resources 

‣ <link	rel='preload'	... 

‣ <link	rel='preconnect'	... 

PRELOAD IN ACTION

‣Preload Resource hints FTW

PRECONNECT IN ACTION

‣Preconnect Resource hints FTW

ALL TOGETHER NOW…

START USING TODAY!

PREFETCH

‣Prefetch links within the viewport, while the CPU is idle

‣For Drupal, use https://www.drupal.org/project/quicklink

https://www.drupal.org/project/quicklink

PREFETCHING
LINKS

LINKS ENTERING VIEWPORT

OPTIMIZATIONS:
NETWORK
‣Avoid chaining dependencies (eg. ES6 imports triggering file
download, which triggers another file download etc)

https://developers.google.com/web/fundamentals/performance/critical-rendering-path/constructing-the-object-model

OPTIMIZATIONS:
RENDERING

WHAT IS THE
CRITICAL PATH?
‣Anything and everything that prevents the webpage from
rendering

‣HTML

‣ CSS in the head

‣ JavaScript in the head

‣ Fonts!

‣You want to minimize everything that is in the critical path.

PERFORMANT
ANIMATIONS
‣Animations cause repaints

‣ background-position

‣ top, left, right, bottom

‣margin, padding

‣ height, width

‣Animations skip repaints - straight to compositing

‣ transform

CSS OPTIMIZATIONS
‣Avoid inlining images via Base64 encoding

‣Avoid large stylesheets

‣ Follow best practices and componentize your styles. Make them easy to
delete

‣Don’t worry about selector performance.

‣ Inline CSS for critical path

‣Split up monolithic stylesheets

‣ Chrome developer tools has a coverage tool that will help ID
unused CSS (and JS).

OPTIMIZE YOUR
JAVASCRIPT
‣Less JavaScript the better!

JAVASCRIPT
MAIN THREAD
EXECUTION

https://medium.com/@addyosmani/the-cost-of-javascript-in-2018-7d8950fbb5d4

2018 JAVASCRIPT
PROCESSING TIMES

OPTIMIZE YOUR
JAVASCRIPT
‣Less JavaScript the better!

‣Identify unused code through Chrome DevTools coverage tool.

‣Identify 💩💩💩 third party scripts.

‣Code split

‣Either automatically through build tool (webpack)

‣ or through (D7) drupal_add_js() or Libraries API (D8)

‣Split up long tasks

‣Profile!

PROFILING
JAVASCRIPT

1. Demo

PROFILE 💩 3RD
PARTY SCRIPTS

1. Webpagetest.org

2. Chrome Developer Tools Demo

PROFILE THIRD
PARTY SCRIPTS IN
CHROME DEVTOOLS
‣Demo!

KEY TAKEAWAYS
(START DOING THIS TODAY!)

‣Learn how to identify performance issues

‣ Learn the metrics

‣ Practice measuring these

‣ Find the bottlenecks on your site!

‣Less JavaScript

‣Start using resource hints today!

‣ Preload your fonts!

‣ Async and then preload your scripts

me (right now), quoting Josh Koenig,
quoting Kyle Matthews

—

Every fast website is alike; every slow
website is slow in its own way

MAKE THE WEB A
BETTER PLACE!
Don’t let proprietary solutions win!

“
“

THANK YOU!
Mike Herchel

Senior Frontend Developer at Lullabot
@mikeherchel

